39 research outputs found

    A robust clustering algorithm for identifying problematic samples in genome-wide association studies

    Get PDF
    Summary: High-throughput genotyping arrays provide an efficient way to survey single nucleotide polymorphisms (SNPs) across the genome in large numbers of individuals. Downstream analysis of the data, for example in genome-wide association studies (GWAS), often involves statistical models of genotype frequencies across individuals. The complexities of the sample collection process and the potential for errors in the experimental assay can lead to biases and artefacts in an individual's inferred genotypes. Rather than attempting to model these complications, it has become a standard practice to remove individuals whose genome-wide data differ from the sample at large. Here we describe a simple, but robust, statistical algorithm to identify samples with atypical summaries of genome-wide variation. Its use as a semi-automated quality control tool is demonstrated using several summary statistics, selected to identify different potential problems, and it is applied to two different genotyping platforms and sample collections

    Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort

    Get PDF
    BACKGROUND AND AIMS: Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology. METHODS: PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population. RESULTS: Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation. CONCLUSIONS: Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.Peer reviewe

    The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease.

    Get PDF
    BACKGROUND/AIMS: Current models of Crohn's disease (CD) describe an inappropriate immune response to gut microbiota in genetically susceptible individuals. NOD2 variants are strongly associated with development of CD, and NOD2 is part of the innate immune response to bacteria. This study aimed to identify differences in fecal microbiota in CD patients and non-IBD controls stratified by NOD2 genotype. METHODS: Patients with CD and non-IBD controls of known NOD2 genotype were identified from patients in previous UK IBD genetics studies and the Cambridge bioresource (genotyped/phenotyped volunteers). Individuals with known CD-associated NOD2 mutations were matched to those with wild-type genotype. We obtained fecal samples from patients in clinical remission with low fecal calprotectin (<250 µg/g) and controls without gastrointestinal disease. After extracting DNA, the V1-2 region of 16S rRNA genes were polymerase chain reaction (PCR)-amplified and sequenced. Analysis was undertaken using the mothur package. Volatile organic compounds (VOC) were also measured. RESULTS: Ninety-one individuals were in the primary analysis (37 CD, 30 bioresource controls, and 24 household controls). Comparing CD with nonIBD controls, there were reductions in bacterial diversity, Ruminococcaceae, Rikenellaceae, and Christensenellaceae and an increase in Enterobacteriaceae. No significant differences could be identified in microbiota by NOD2 genotype, but fecal butanoic acid was higher in Crohn's patients carrying NOD2 mutations. CONCLUSIONS: In this well-controlled study of NOD2 genotype and fecal microbiota, we identified no significant genotype-microbiota associations. This suggests that the changes associated with NOD2 genotype might only be seen at the mucosal level, or that environmental factors and prior inflammation are the predominant determinant of the observed dysbiosis in gut microbiota.Funding was supported by CORE, the Digestive Diseases Foundation and the Wellcome Trust [grant number 097943 to NAK, 093885 to CAL and 098051 to Alan W Walker and Julian Parkhill . Dr. Walker receives core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS). We also acknowledge the NIHR Biomedical Research Centre awards to Addenbrooke’s Hospital/University of Cambridge School of Clinical Medicine and acknowledge the NIHR Newcastle Biomedical Research Centre

    Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease

    Get PDF
    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.This work was supported by the NIHR Cambridge Biomedical Research Centre (in particular John Todd and the NIHR BRC Genomics Theme), Crohn's and Colitis UK (Medical Research Award M/14/2), the Evelyn Trust (17/07), and the Medical Research Council (Programme Grant MR/L019027/1). J.C.L. is supported by a Wellcome Trust Intermediate Clinical Fellowship (105920/Z/14/Z) and D.B. by a Marie Curie PhD Fellowship (TranSVIR FP7-PEOPLE-ITN-2008 #238756). C.A.A. is supported by the Wellcome Trust (098051). K.G.C.S. is an NIHR Senior Investigator. This study makes use of data generated by the UK10K Consortium, derived from samples from ALSPAC and DTR cohorts. A full list of the investigators who contributed to the generation of the data is available from www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust (WT091310)

    The Impact of NOD2 Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals Without Gastrointestinal Inflammation

    Get PDF
    Background and aims: Historical and emerging data implicate fungi in Crohn's disease [CD] pathogenesis. However, a causal link between mycobiota, dysregulated immunity, and any impact of NOD2 variants remains elusive. This study aims to evaluate associations between NOD2 variants and faecal mycobiota in CD patients and non-CD subjects. Methods: Faecal samples were obtained from 34 CD patients [18 NOD2 mutant, 16 NOD2 wild-type] identified from the UK IBD Genetics Consortium. To avoid confounding influence of mucosal inflammation, CD patients were in clinical remission and had a faecal calprotectin <250 μg/g; 47 non-CD subjects were included as comparator groups, including 22 matched household [four NOD2 mutant] and 25 non-household subjects with known NOD2 genotype [14 NOD2 mutant] identified by the NIHR BioResource Cambridge. Faecal mycobiota composition was determined using internal transcribed spacer 1 [ITS1] sequencing and was compared with 16S rRNA gene sequences and volatile organic compounds. Results: CD was associated with higher numbers of fungal observed taxonomic units [OTUs] [p = 0.033]. Principal coordinates analysis using Jaccard index [p = 0.018] and weighted Bray-Curtis dissimilarities [p = 0.01] showed Candida spp. clustered closer to CD patients whereas Cryptococcus spp. clustered closer to non-CD. In CD, we found higher relative abundance of Ascomycota [p = 0.001] and lower relative abundance Basidiomycota [p = 0.019] phyla. An inverse relationship was found between bacterial and fungal Shannon diversity in NOD2 wild-type which was independent of CD [r = -0.349; p = 0.029]. Conclusions: This study confirms compositional changes in the gut mycobiota in CD and provides evidence that fungi may play a role in CD pathogenesis. No NOD2 genotype-specific differences were observed in the faecal mycobiota.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This work was supported by CORE, the Digestive Diseases Foundation [now Guts UK], and the Wellcome Trust [grant number 097943 to NAK and 093885 to CAL] for stool collection, bacterial sequencing, and VOC profiling. Further financial support for fungal sequencing was provided from Northumbria University and NU-OMICS.published version, accepted version (12 month embargo), submitted versio

    Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-Regulated Pathway

    No full text
    The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFb1 reduces production of proinflammatory cytokines, including TNFa, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses

    Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.Large-scale sequence-based analyses identify novel risk variants and susceptibility genes for Crohn's disease, and implicate mesenchymal cell-mediated intestinal homeostasis in disease etiology.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Investigation of Multiple Susceptibility Loci for Inflammatory Bowel Disease in an Italian Cohort of Patients

    Get PDF
    BACKGROUND: Recent GWAs and meta-analyses have outlined about 100 susceptibility genes/loci for inflammatory bowel diseases (IBD). In this study we aimed to investigate the influence of SNPs tagging the genes/loci PTGER4, TNFSF15, NKX2-3, ZNF365, IFNG, PTPN2, PSMG1, and HLA in a large pediatric- and adult-onset IBD Italian cohort. METHODS: Eight SNPs were assessed in 1,070 Crohn's disease (CD), 1,213 ulcerative colitis (UC), 557 of whom being diagnosed at the age of ≤16 years, and 789 healthy controls. Correlations with sub-phenotypes and major variants of NOD2 gene were investigated. RESULTS: The SNPs tagging the TNFSF15, NKX2-3, ZNF365, and PTPN2 genes were associated with CD (P values ranging from 0.037 to 7×10(-6)). The SNPs tagging the PTGER4, NKX2-3, ZNF365, IFNG, PSMG1, and HLA area were associated with UC (P values 0.047 to 4×10(-5)). In the pediatric cohort the associations of TNFSF15, NKX2-3 with CD, and PTGER4, NKX2-3, ZNF365, IFNG, PSMG1 with UC, were confirmed. Association with TNFSF15 and pediatric UC was also reported. A correlation with NKX2-3 and need for surgery (P  =  0.038), and with HLA and steroid-responsiveness (P  =  0.024) in UC patients was observed. Moreover, significant association in our CD cohort with TNFSF15 SNP and colonic involvement (P  =  0.021), and with ZNF365 and ileal location (P  =  0.024) was demonstrated. CONCLUSIONS: We confirmed in a large Italian cohort the associations with CD and UC of newly identified genes, both in adult and pediatric cohort of patients, with some influence on sub-phenotypes

    Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility

    Full text link
    peer reviewe
    corecore