368 research outputs found

    Superconductivity in an organic insulator at very high magnetic fields

    Full text link
    We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ\lambda-(BETS)2_2FeCl4_4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field {\em compensates} the exchange field of aligned Fe3+^{3+} ions. We further argue that the Fe3+^{3+} moments are essential to stabilize the resulting singlet, two-dimensional superconducting stateComment: 9 pages 3 figure

    The High Magnetic Field Phase Diagram of a Quasi-One Dimensional Metal

    Full text link
    We present a unique high magnetic field phase of the quasi-one dimensional organic conductor (TMTSF)2_2ClO4_4. This phase, termed "Q-ClO4_4", is obtained by rapid thermal quenching to avoid ordering of the ClO4_4 anion. The magnetic field dependent phase of Q-ClO4_4 is distinctly different from that in the extensively studied annealed material. Q-ClO4_4 exhibits a spin density wave (SDW) transition at \approx 5 K which is strongly magnetic field dependent. This dependence is well described by the theoretical treatment of Bjelis and Maki. We show that Q-ClO4_4 provides a new B-T phase diagram in the hierarchy of low-dimensional organic metals (one-dimensional towards two-dimensional), and describe the temperature dependence of the of the quantum oscillations observed in the SDW phase.Comment: 10 pages, 4 figures, preprin

    Equilibrium magnetisation structures in ferromagnetic nanorings

    Full text link
    The ground state of the ring-shape magnetic nanoparticle is studied. Depending on the geometrical and magnetic parameters of the nanoring, there exist different magnetisation configurations (magnetic phases): two phases with homogeneous magnetisation (easy-axis and easy-plane phases) and two inhomogeneous (planar vortex phase and out-of-plane one). The existence of a new intermediate out-of-plane vortex phase, where the inner magnetisation is not strongly parallel to the easy axis, is predicted. Possible transitions between different phases are analysed using the combination of analytical calculations and micromagnetic simulations.Comment: LaTeX, 19 pages, 11 figure

    Spin-density-wave transition of (TMTSF)2_2PF6_6 at high magnetic fields

    Get PDF
    The transverse magnetoresistance of the Bechgaard salt (TMTSF)2_2PF6_6 has been measured for various pressures, with the field up to 24 T parallel to the lowest conductivity direction c^{\ast}. A quadratic behavior is observed in the magnetic field dependence of the spin-density-wave (SDW) transition temperature TSDWT_{\rm {SDW}}. With increasing pressure, TSDWT_{\rm {SDW}} decreases and the coefficient of the quadratic term increases. These results are consistent with the prediction of the mean-field theory based on the nesting of the quasi one-dimensional Fermi surface. Using a mean field theory, TSDWT_{\rm {SDW}} for the perfect nesting case is estimated as about 16 K. This means that even at ambient pressure where TSDWT_{\rm {SDW}} is 12 K, the SDW phase of (TMTSF)2_2PF6_6 is substantially suppressed by the two-dimensionality of the system.Comment: 11pages,6figures(EPS), accepted for publication in PR

    Transport of Dirac quasiparticles in graphene: Hall and optical conductivities

    Full text link
    The analytical expressions for both diagonal and off-diagonal ac and dc conductivities of graphene placed in an external magnetic field are derived. These conductivities exhibit rather unusual behavior as functions of frequency, chemical potential and applied field which is caused by the fact that the quasiparticle excitations in graphene are Dirac-like. One of the most striking effects observed in graphene is the odd integer quantum Hall effect. We argue that it is caused by the anomalous properties of the Dirac quasiparticles from the lowest Landau level. Other quantities such as Hall angle and Nernst signal also exhibit rather unusual behavior, in particular when there is an excitonic gap in the spectrum of the Dirac quasiparticle excitations.Comment: 25 pages, RevTeX4, 8 EPS figures; final version published in PR

    Isolation and regeneration of transiently transformed protoplasts from gametophytic blades of the marine red alga Porphyra yezoensis

    Get PDF
    Despite the recent progress of transient gene expression systems in a red alga Porphyra yezoensis by particle bombardment, a stable transformation system has yet to establish in any marine red macrophytes. One of the reasons of the difficulty in genetic transformation in red algae is the lack of systems to select and isolate transformed cells from gametophytic blades. Thus, toward the establishment of the stable transformation system in P. yezoensis, we have developed a procedure by which transiently transformed gametophytic cells were prepared from particle bombarded-gametophytic blade as regeneratable protoplasts. Using mixture of marine bacterial enzymes, yield of protoplasts was high as reported elsewhere; however, these protoplasts did not develop. In contrast, protoplasts prepared from gametophytes treated with allantoin were normally developed, in which the overexpression of a \u3b2-glucuronidase reporter gene had no effect on the regeneration of protoplasts. Therefore, the use of allantoin in protoplast preparation sheds a new light on the realization of an efficient isolation and selection of study transformed cells from gametophytic blades
    corecore