39 research outputs found

    AL2O3-Me LAYERS OBTAINED BY THE ELECTROCHEMICAL METHOD

    Get PDF
    Fine membranes with controlled size of pores were produced by the two step anodizing process of the aluminium in oxalic acid solution. Highly ordered Co, Fe and CoFe nanowire arrays were prepared by two electrodeposition techniques: pulsed (PED) and potentiostatic electrodeposition (DC) into the anodic alumina membrane (AAM) templates. It has been observed that both experimental methods (PED, DC) enable the embedding of Co, Fe as well as CoFe alloy into the pores of the AAM with a high aspect ratio

    Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems

    Get PDF
    A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN)6]3−/[Fe(CN)6]4− performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized

    Electrodeposition of manganese layers from sustainable sulfate based electrolytes

    Get PDF
    Functional manganese-(Mn)-containing layers are becoming increasingly important in the fields of sacrificial corrosion protection, biodegradable medical devices or electrochemical energy conversion systems. Electrodeposition can be a low cost and time-efficient production route, but the very electronegative nature of Mn makes this reduction process quite challenging. In this paper, electrolytic potentiostatic deposition of metallic Mn layers from environmentally friendly aqueous manganese sulfate electrolytes with pH 3 is successfully demonstrated. A continuous electrolyte flow in the cathodic compartment of the electrochemical cell for controlling the pH value during deposition was found to be essential for achieving good layer qualities. Based on cyclic voltammetry analysis in combination with quartz crystal microbalance measurements a suitable deposition potential range was identified. The obtained electrodeposited layers were characterized by means of SEM, XRD, GD-OES and XPS. The shift of the deposition potential from − 2.4 VMSE to − 2.6 VMSE (deposition time 60 min) yields a thickness increase of the metallic α-Mn deposits from < 500 nm to ~ 2 ÎŒm. Only thin additional surface regions of Mn-oxides/-hydroxides were identified. The important role of (NH4)2SO4 as complex-forming electrolyte additive is discussed and an impact of the salt concentration on the deposit properties is revealed. This is a promising starting point for further Mn alloy deposition analysis

    Anodization Treatment of Ti6Al4V in Electrolytes Containing HF

    Get PDF
    The Ti6Al4V alloy is already well-known likely material for implant applications. As well as pure titanium, Ti6Al4V alloy possess the ability to form spontaneously a thin passive oxide layer on the surface. This oxide layer provides an enhanced biocompatibility and may be optimum for the osseointegration if it is applied a tailoring of the surface topology and chemistry. The present paper addresses a study of Ti6Al4V surface modification by anodization as function of HF concentration in electrolyte and time, with the purpose to achieve an ordered porous titanium oxide layer. Prior to the anodization treatment the as-prepared surfaces were microstructurally characterized by SEM, EDX and XRD. The oxidized surfaces were subjected to SEM measurement in order to observe the achieved morphology

    Pulse Reverse Plating of Copper Micro-Structures in Magnetic Gradient Fields

    No full text
    Micro-structured copper layers are obtained from pulse-reverse electrodeposition on a planar gold electrode that is magnetically patterned by magnetized iron wires underneath. 3D numerical simulations of the electrodeposition based on an adapted reaction kinetics are able to nicely reproduce the micro-structure of the deposit layer, despite the height values still remain underestimated. It is shown that the structuring is enabled by the magnetic gradient force, which generates a local flow that supports deposition and hinders dissolution in the regions of high magnetic gradients. The Lorentz force originating from radial magnetic field components near the rim of the electrode causes a circumferential cell flow. The resulting secondary flow, however, is superseded by the local flow driven by the magnetic gradient force in the vicinity of the wires. Finally, the role of solutal buoyancy effects is discussed to better understand the limitations of structured growth in different modes of deposition and cell geometries
    corecore