77 research outputs found

    The generic nameMediocris (Cetacea: Delphinoidea: Kentriodontidae), belongs to a foraminiferan

    Get PDF
    No abstract available for this article.doi:10.1002/mmng.20060001

    Form, Function, and Anatomy of Dorudon Atrox (Mammalia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt

    Full text link
    p. 1-222http://deepblue.lib.umich.edu/bitstream/2027.42/41255/1/529917textts.pd

    Origin and Evolution of Large Brains in Toothed Whales

    Get PDF
    Toothed whales (order Cetacea: suborder Odontoceti) are highly encephalized, possessing brains that are significantly larger than expected for their body sizes. In particular, the odontocete superfamily Delphinoidea (dolphins, porpoises, belugas, and narwhals) comprises numerous species with encephalization levels second only to modern humans and greater than all other mammals. Odontocetes have also demonstrated behavioral faculties previously only ascribed to humans and, to some extent, other great apes. How did the large brains of odontocetes evolve? To begin to investigate this question, we quantified and averaged estimates of brain and body size for 36 fossil cetacean species using computed tomography and analyzed these data along with those for modern odontocetes. We provide the first description and statistical tests of the pattern of change in brain size relative to body size in cetaceans over 47 million years. We show that brain size increased significantly in two critical phases in the evolution of odontocetes. The first increase occurred with the origin of odontocetes from the ancestral group Archaeoceti near the Eocene-Oligocene boundary and was accompanied by a decrease in body size. The second occurred in the origin of Delphinoidea only by 15 million years ago

    Reconstructing Cetacean Brain Evolution Using Computed Tomography

    Get PDF
    Until recently, there have been relatively few studies of brain mass and morphology in fossil cetaceans (dolphins, whales, and porpoises) because of difficulty accessing the matrix that fills the endocranial cavity of fossil cetacean skulls. As a result, our knowledge about cetacean brain evolution has been quite limited. By applying the noninvasive technique of computed tomography (CT) to visualize, measure, and reconstruct the endocranial morphology of fossil cetacean skulls, we can gain vastly more information at an unprecedented rate about cetacean brain evolution. Here, we discuss our method and demonstrate it with several examples from our fossil cetacean database. This approach will provide new insights into the little-known evolutionary history of cetacean brain evolution

    Ancalecetus simonsi, A New Dorudontine Archaeocete (Mammalia, Cetacea) from the Early Late Eocene of Wadi Hitan, Egypt

    Full text link
    359-401http://deepblue.lib.umich.edu/bitstream/2027.42/48634/2/ID500.pd

    Evolution of Coryphodon (Mammalia, Pantodonta) in the Late Paleocene and Early Eocene of Northwestern Wyoming

    Full text link
    259-289http://deepblue.lib.umich.edu/bitstream/2027.42/48649/2/ID516.pd

    Alveoli, teeth, and tooth loss: Understanding the homology of internal mandibular structures in mysticete cetaceans

    Get PDF
    The evolution of filter feeding in baleen whales (Mysticeti) facilitated a wide range of ecological diversity and extreme gigantism. The innovation of filter feeding evolved in a shift from a mineralized upper and lower dentition in stem mysticetes to keratinous baleen plates that hang only from the roof of the mouth in extant species, which are all edentulous as adults. While all extant mysticetes are born with a mandible lacking a specialized feeding structure (i.e., baleen), the bony surface retains small foramina with elongated sulci that often merge together in what has been termed the alveolar gutter. Because mysticete embryos develop tooth buds that resorb in utero, these foramina have been interpreted as homologous to tooth alveoli in other mammals. Here, we test this homology by creating 3D models of the internal mandibular morphology from terrestrial artiodactyls and fossil and extant cetaceans, including stem cetaceans, odontocetes and mysticetes. We demonstrate that dorsal foramina on the mandible communicate with the mandibular canal via smaller canals, which we explain within the context of known mechanical models of bone resorption. We suggest that these dorsal foramina represent distinct branches of the inferior alveolar nerve (or artery), rather than alveoli homologous with those of other mammals. As a functional explanation, we propose that these branches provide sensation to the dorsal margin of the mandible to facilitate placement and occlusion of the baleen plates during filer feeding

    The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases

    Get PDF
    There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts, and these changes are decoupled from variation in habitable land area that existed through time. Spatial sampling therefore represents a real and profound sampling bias that cannot be explained as redundancy. To address this bias, we estimate terrestrial tetrapod diversity for palaeogeographical regions of approximately equal size. We find that regional-scale diversity was constrained over timespans of tens to hundreds of millions of years, and similar patterns are recovered for major subgroups, such as dinosaurs, mammals and squamates. Although the Cretaceous/Palaeogene mass extinction catalysed an abrupt two- to three-fold increase in regional diversity 66 million years ago, no further increases occurred, and recent levels of regional diversity do not exceed those of the Palaeogene. These results parallel those recovered in analyses of local community-level richness. Taken together, our findings strongly contradict past studies that suggested unbounded diversity increases at local and regional scales over the last 100 million years

    Cranial Morphology of Protosiren fraasi (Mammalia, Sirenia) from the Middle Eocene of Egypt: A New Study Using Computed Tomography

    Full text link
    41-67http://deepblue.lib.umich.edu/bitstream/2027.42/48641/2/ID508.pd
    • …
    corecore