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FEATURE ARTICLE

Reconstructing Cetacean Brain Evolution Using
Computed Tomography
LORI MARINO,* MARK D. UHEN, NICHOLAS D. PYENSON, AND BRUNO FROHLICH

Until recently, there have been relatively few studies of brain mass and morphology in fossil cetaceans (dolphins,
whales, and porpoises) because of difficulty accessing the matrix that fills the endocranial cavity of fossil cetacean
skulls. As a result, our knowledge about cetacean brain evolution has been quite limited. By applying the noninvasive
technique of computed tomography (CT) to visualize, measure, and reconstruct the endocranial morphology of fossil
cetacean skulls, we can gain vastly more information at an unprecedented rate about cetacean brain evolution. Here,
we discuss our method and demonstrate it with several examples from our fossil cetacean database. This approach
will provide new insights into the little-known evolutionary history of cetacean brain evolution. Anat Rec (Part B: New
Anat) 272B:107–117, 2003. © 2003 Wiley-Liss, Inc.

KEY WORDS: computed tomography; CT; Cetacea; imaging; fossil; endocranial; brain; evolution; encephalization

INTRODUCTION

The origin and evolutionary history of
Cetacea (dolphins, whales, and por-
poises) represents one of the most dra-
matic and provocative transformations
in the fossil record. Cetacea consists of
one extinct and two modern suborders.
The Eocene suborder, Archaeoceti,
contained approximately 30 (described)
genera (updated from Thewissen, 1998)
and survived from the early Eocene,
around 53 million years ago (Ma) until
the late Eocene, around 38 Ma (Barnes
et al., 1985; Bajpai and Gingerich, 1998;
Uhen, 1998). Of the modern suborders,

Mysticeti (comprising 11 living species
of baleen whales) are first found in the
fossil record in the latest Eocene
(Mitchell, 1989) and Odontoceti (com-
prising 66 living species of toothed
whales, dolphins, and porpoises) are
first found in the fossil record in the
early Oligocene (Barnes et al., 1985).
Cetacean terrestrial ancestry is closely
tied to that of ungulates (hooved mam-
mals) and particularly Artiodactyla, the
“even-toed” ungulates. For many years,
molecular evidence has indicated that
cetaceans are embedded in the
paraphyletic Artiodactyla and that hip-

popotamids are their extant sister
group (Nikaido et al., 1996; Shimamura
et al., 1997; Gatesy, 1998; Milinkovitch
et al., 1998). Recent fossil morphologic
evidence confirms an artiodactyl–ceta-
cean link from both early Eocene pro-
tocetid (Gingerich et al., 2001) and pa-
kicetid (Thewissen et al., 2001) whales
(Geisler and Uhen, 2003). See Figure 1
for a phylogenetic tree depicting the
ranges and phylogenetic relationships
of extinct and extant cetacean families.

Skeletal fossils document the major
transformations in cranial and post-
cranial morphology that occurred
throughout cetacean evolution (Gaskin,
1982; Barnes, 1985; Oelschlager, 1990;
Buchholtz, 1998; Luo, 1998). In addi-
tion, some of the most significant evo-
lutionary changes that occurred among
cetaceans are in brain size and struc-
ture. Numerous lines of evidence indi-
cate that the terrestrial ancestors of

Some of the most
significant evolutionary
changes that occurred

among cetaceans are in
brain size and structure.
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cetaceans were not particularly highly
encephalized and possessed typically
organized mammalian brains
(Edinger, 1955; Gingerich, 1998). The
encephalization quotient (EQ) quanti-
fies the actual brain size of an animal
compared to the expected brain size
of an animal of that body weight
within a given reference group. EQs
higher than 1 are greater than ex-
pected, and those less than 1 are lower
than expected. Presently, when com-
pared to other modern mammals, sev-

eral cetacean groups with EQs in the
range of 4.0 to 5.0, possess enceph-
alization levels significantly higher
than all other mammals except mod-
ern humans with EQs of 7.0 (Marino,
1998) and evince evidence of a sub-
stantial degree of morphologic diver-
gence and cortical reorganization re-
sulting in a different elaborative mode
from other mammals (Glezer et al.,
1988). Therefore, cetacean brains
have changed significantly through-
out their evolution. A longstanding

problem has been that the data and
analysis techniques for determining
the pattern of that dramatic change
from the terrestrial ancestral form to
the present form have not been avail-
able.

CETACEAN NEUROANATOMY
FROM ENDOCASTS

There have been relatively few esti-
mates of brain mass and/or brain–
body mass ratios in fossil cetaceans

Figure 1. Phylogenetic relationships among families of Cetacea. Families of the paraphyletic suborder Archaeoceti are shown in green,
whereas those of Mysticeti are shown in blue, and those of the Odontoceti are shown in red. Ranges of families are shown in solid colored
lines, and phylogenetic links are shown in dashed lines. Some families (such as the Basilosauridae) are paraphyletic in that they are thought
to be ancestral to other groups of cetaceans (in this case, the Neoceti [Odontoceti� Mysticeti]). This figure is based on Figure 1 of Barnes
et al. (1985).
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because of difficulty accessing the
matrix that fills the endocranial cav-
ity of fossil cetacean skulls, which is
often very hard and difficult to re-
move. Also, even when the matrix is
removed, it is difficult and time con-
suming to make accurate artificial
endocasts from which volume mea-
surements can be made. Several
early estimates of brain mass from
endocranial casts have been pub-
lished (Dart, 1923; Marples, 1949;
Breathnach, 1955). More recently,
Gingerich (1998) used natural endo-
casts to reinterpret brain and body
mass for several archaeocetes and
calculated EQs relative to modern
terrestrial mammals ranging from
0.25 to 0.51, demonstrating that
early semiaquatic and later fully
aquatic archaeocetes possessed lev-
els of encephalization dramatically
lower than most modern cetaceans.

In addition to serving as a proxy for
brain size, natural endocasts have also
served as the basis for morphologic de-
scriptions of brain contours in archaeo-
cetes and early modern cetaceans
(Edinger, 1955). Evolutionary changes
in brain organization are not as easily
assessed as changes in brain size. Often,
as in the case of cetaceans, the enlarged
cerebrum masks the structures under-
neath. However, many morphologic
and surface features can be evaluated
and conservatively interpreted from the
contour of fossil endocasts and the en-
docranial cavity wall. Various morpho-
logic features of fossil cetacean endo-
casts have been noted in the literature,
including cerebral asymmetry (Stefa-
niak, 1993), lobular morphology
(Kellogg, 1936; Edinger, 1955; Czyze-
wska, 1988; Stefaniak, 1993), the rela-
tive size of major structures (Kellogg,
1936; Edinger, 1955; Czyzewska, 1988;
Stefaniak, 1993), and imprints of cra-
nial nerves (Kellogg, 1936; Edinger,
1955; Czyzewska, 1988). These kinds of
observations, when interpreted cau-
tiously, can serve as the basis for infer-
ence about functional changes in the
brains of fossil cetaceans.

CETACEAN NEUROANATOMY
FROM COMPUTED
TOMOGRAPHY

Our understanding of cetacean brain
evolution has been hindered by the
slow trickle of data that has accumu-

lated over the decades from examina-
tions of either natural or artificial en-
docasts. In the past few years,
computed tomography (CT) imaging
has become a breakthrough investiga-
tive tool in the study of fossil endocra-
nia because it allows for nondestruc-
tive visualization and measurement of
endocranial features and digital re-
construction of specimens. CT in-
volves the application of a collimated
series of x-rays through the target ob-
ject to produce a series of sectional
images, called tomographs, which re-
flect the radiographic densities of tis-
sues in the plane of scanning. When
radiographic densities in the sediment
that fills the endocranial cavity are
sufficiently different from that of the
surrounding bone, the image presents
a way to visually isolate, measure, and
reconstruct the endocranial cavity.

We have used CT to elucidate and
measure the endocranial structure of
fossil cetacean skulls for the past 5
years. CT has allowed us to gain un-
precedented views and insights into
the previously largely inaccessible
world of fossil cetacean endocranial
morphology. The result has been a
substantial increase in the slope of
our knowledge about cetacean brain
evolution. Here, we describe our ap-
proach and some of the CT-based
methods we are using in the course of
our investigations of fossil cetacean
endocrania to reconstruct cetacean
brain evolution.

OUR PROJECT

Over the course of approximately 13
million years of evolution, from
around 52 Ma to around 39 Ma, ceta-

ceans transformed from a terrestrial
(Thewissen et al., 2001), to a semia-
quatic (Gingerich et al., 2001), to a
fully aquatic creature (Uhen, 1998).
Previous studies indicate that Eocene
cetaceans (archaeocetes) are not par-
ticularly encephalized when com-
pared with modern odontocetes (Gin-
gerich, 1998; Marino et al., 2000).
Marino et al. (2000) was the first study
of cetacean encephalization to use CT
methodology to visualize, measure,
and reconstruct endocranial features
of archaeocete fossils. The value of CT
was demonstrated in this study by the
fact that we obtained more data on
archaeocete brain size by using CT
than has been collected from natural
and artificial endocasts during the
past several decades.

In Marino et al. (2000), we sug-
gested that the principal features of
increased encephalization in modern
cetaceans emerged as a result of selec-
tive pressures that occurred well after
the initial transition from a terrestrial
to aquatic existence. This assertion
was based on our analysis of enceph-
alization patterns showing that there
was little change in encephalization
over the entire transition in lifestyle
from terrestrial to aquatic. This obser-
vation suggests that hypotheses about
strong drivers of cetacean brain evo-
lution should focus on factors other
than the terrestrial-to-aquatic transi-
tion.

There is a prodigious body of litera-
ture devoted to hypotheses about both
the intelligence of cetaceans and the
variables that have shaped the evolu-
tion of such large brains (Ridgway et
al., 1966; Jerison, 1978, 1986; Eisen-
berg, 1986; Herman, 1986; Worthy and
Hickie, 1986; Glezer et al., 1988; Ridg-
way and Wood, 1988; Marino, 1996;
Connor et al., 1998). Theories have
highlighted such varied and not alto-
gether independent factors as social
ecology (Connor et al., 1998), commu-
nication (Jerison, 1986), climate change
(Davies, 1963; Whitmore, 1994), echo-
location (Jerison, 1978; Wood and
Evans, 1980; Worthy and Hickie, 1986;
Oelschlager, 1990), and even diving and
oxygenation demands as a constraint
on brain size (Robin, 1973). The first
step in determining which (if any) of
these hypotheses are potential explana-
tions for the origin and evolution of
large brains in cetaceans, is to identify

In addition to serving as
a proxy for brain size,

natural endocasts have
also served as the basis

for morphologic
descriptions of brain

contours in
archaeocetes and early

modern cetaceans.
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the periods in cetacean evolutionary
history associated with increases in
brain size. Different hypotheses require
different patterns of brain evolution at
different times, under different condi-
tions, and in different segments of the
cetacean phylogenetic tree. Thus, map-
ping the evolution of brain size on a
time-constrained phylogenetic history
will lend support to some hypotheses
and eliminate others.

The present study is a comprehen-
sive extension of our initial CT-based
studies of archaeocete brain size and
encephalization. We use CT scanning
and postimage processing to calculate
endocranial volume and generate
three-dimensional reconstructions of
endocranial contour for a larger set of
fossil cetacean specimens over a wider
range of time, including a subset of
modern cetaceans. Specifically, the
objectives of this study are to (1) mea-
sure and document endocranial vol-
ume and morphology, along with
postcranial indicators of body mass,
in individual fossil and modern ceta-
cean specimens; (2) use these data to
estimate encephalization level in fos-
sil and modern taxa; and (3) recon-
struct the sequence of change in brain
size and morphology in cetacean
based on our current understanding
of the phylogenetic history of this
group.

As noted above, some hypotheses
about the evolution of cetacean brains
make specific testable predictions
about when in the evolution of an
aquatic lifestyle certain anatomical
features of the brain would have de-
veloped. The data to be obtained in
the present study will form the basis
for tests of some of these hypotheses,

particularly when combined with data
on other anatomical and environmen-
tal factors. Additionally, the present
study will yield data on the rate and
pattern of cetacean brain evolution
that will inform current theories
about the uniqueness of the rate and
pattern of brain evolution in other
phylogenetic groups, including homi-
nids. Finally, as discussed below un-
der our long-term goals, the data from
the present study will eventually be
considered along with paleoenviron-
mental data to understand which fac-
tors are correlated with increases in
encephalization in cetaceans. These

future studies will allow us to address
the generality of existing theories
about the relationship between vari-
ous habitat types and encephalization
in other mammals.

CETACEAN FOSSIL BRAIN
ANALYSIS

Specimen Selection

Most of the samples for this study are
part of the fossil vertebrate collections
of the United States National Museum
(USNM) at The Smithsonian Institu-
tion. The collection includes over

Figure 2. Photograph (dorsal view) of USNM167622, Eurhinodelphis morrisi, in plaster of Paris
cradle with hardened matrix inside skull visible along the midline openings between the
premaxilla. The anterior end of the rostrum is broken and missing. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

TABLE 1. The number of species (and families) for each geologic epoch of the cenozoic
era included in this study*

Epoch Start (Ma) End (Ma) Archaeoceti Mysticeti Odontoceti Epoch Totals

Recent 0.8 0.0 0 (0) 0 (0) 20 (9) 20 (9)
Pleistocene 1.8 0.8 0 (0) 0 (0) 0 (0) 0 (0)
Pliocene 5.3 1.8 0 (0) 0 (0) 3 (3) 03 (3)
Miocene 24 5.3 0 (0) 2 (1) 18 (9) 20 (10)
Oligocene 34 24 0 (0) 5 (5) 7 (7) 12 (12)
Eocene 56 34 6 (3) 1 (1) 1 (1) 7 (3)

Suborder Totals 6 (3) 8 (5) 44 (20)

*The Paleocene is not included, since whales did not evolve until the late early Eocene. The boundaries for each epoch are
shown in millions of years (Ma), while totals (numbers of species/families) are provided for each epoch. The number of species
is listed first, followed by the number of families in parentheses.
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9,500 fossil cetacean specimens of
various sorts ranging from single
bones or teeth up to and including
virtually complete skeletons. Addi-
tional specimens from the Charleston
Museum (ChM), the University of
Michigan Museum of Paleontology
(UMMP), and the Natural History Mu-
seum of Los Angeles County (LACM)
were studied.

Specimens were selected for this
study according to several criteria.
First, we chose specimens that
spanned from cetacean origins in the
Eocene up to and including the re-
cent. Endocranial volume values for
recent (modern/extant taxa) speci-
mens included in this study are taken
from the literature (Marino, 1998)
and also from recent specimens in the
vertebrate zoology collection at the
USNM.

The second criterion was taxo-
nomic. It would be ideal to include
specimens representing all families of
fossil and modern cetaceans, but un-
fortunately some specimens, species,
and even entire families could not be
included in the study because the
specimens were too large to fit into
the CT scanner. Most mysticetes were
too large to scan, although we have
included some small early mysticetes.
In addition, larger physeterids (sperm
whales) were too large to scan, al-
though some smaller representatives
of the Physeteridae were included.

The third criterion for inclusion
was quality, which was assessed
mainly on completeness of the skull
and the lack of any obvious deforma-
tion. In addition, because one of our
goals is to determine whether changes

in encephalization are related to
changes in echolocation and/or hear-
ing ability, specimens with associated
periotic bones were favored over
those without associated periotics.
Another criterion was the nature of
the sediment that filled the endocra-
nial cavity. Siliciclastic sediment (sed-
iment composed of silica-rich miner-
als such as quartz and clay minerals)
is much more radiotransparent than
carbonate sediment (mainly calcite
and other carbonate minerals such as
barite and celestite). Thus, specimens
preserved in siliciclastic sediment
were favored over those preserved in
carbonate sediment.

Lastly, specimens were accepted or
rejected for inclusion in the study
once they were scanned. Any signifi-
cant deformation that revealed itself

in the scans prompted us to exclude
specimens from the study. In addi-
tion, if there was poor contrast be-
tween the sediment and bone, or if the
sediment scattered the x-rays during
scanning and created artifacts, speci-
mens were rejected.

The result is a collection of 166 fos-
sil specimens and 50 modern odonto-
cete specimens from which data have
been or is being collected. Nine of the
fossils are archaeocetes, 15 are mys-
ticetes, 115 are odontocetes, and an-
other 27 have not been identified to
suborder as yet, but most are likely to
be odontocetes. Due to the difficulty
of including the large mysticetes, we
decided to focus our study on odonto-
cetes. Table 1 shows the number of
species and families represented in
each time period and suborder.

Figure 2 depicts a typical odonto-
cete fossil specimen from the Mio-
cene, USNM 167622, Eurhinodelphis
morrisi, from Zone 14 of the Calvert
Formation, Maryland (approximately
14 Ma). This specimen shows a con-
siderable degree of telescoping, the
evolutionary transformation of the
skull by which rostral elements elon-
gate, caudal elements move dorsoros-
trally, and the external nares migrate
to the dorsal apex of the skull. Figure
3 depicts photographs (lateral and
dorsal views) of a much older archao-
ecete fossil from the Eocene, USNM
11121, Basilosaurus cetoides, from the
Ocala Formation, Florida (approxi-
mately 37 Ma). The condition of the

Figure 3. Photographs of USNM 11121 Basilosaurus cetoides filled with hardened matrix. A:
Lateral view. B: Dorsal view. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 4. An archaoecete specimen from the Eocene USNM 16638, Zygorhiza kochii, in a
ventrad position, anterior end pointing away from the scanner, before scanning. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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specimen in Figure 3 is typical of a
specimen dating from the Eocene. De-
spite being filled with hardened ma-
trix we were able to use CT to measure
endocranial volume in this specimen.

CT Scanning Protocol

CT scanning of fossil specimens was
conducted using a Siemens Somatom
SP scanner located in Bruno Frohli-
ch’s laboratory in the Department of
Anthropology at the National Mu-
seum of Natural History (USNM),
Smithsonian Institution. The scanner
uses a Sun Sparc microcomputer run-
ning Sun OS. Image acquisition, anal-
ysis, and file conversions are controlled
by Siemens SOMARIS software.
OSIRIS software (University Hospital
of Geneva) was used to convert Sie-
mens image files into DICOM images.
Additional scans were conducted at the
Medical University of Charleston in
Charleston, South Carolina, on a Mar-
coni MX8000 multiple-slice spiral scan-

ner and at Methodist Hospital in Arca-
dia, California, on a Picker PQ 5000
single-slice spiral scanner. We obtained
contiguous 1- to 2-mm coronal scans of
the entire cranium of each specimen
using different scanning parameters,
depending on the estimated density of
the fossil and endocranial matrix, level
of permineralization of the bone, and
whether the skull was embedded in sur-
rounding hardened matrix. We scanned
the entire specimen past the endocra-
nial cavity as well. Specimens were po-
sitioned on the scan table either ven-
trally or dorsally, depending on which
orientation was more stable and so that
the posterior end was usually scanned
first. Figure 4 shows an archaoecete
specimen from the Eocene, USNM
16638, Zygorhiza kochii, from the Yazoo
Clay Formation (approximately 37 Ma),
Choctaw County, Alabama, lying ven-
trad on the table just before scanning.
Figure 5 shows a posterior-to-anterior
series of 1.22-mm-thick coronal CT im-

ages at 24.4-mm intervals (except for
the last, which is 22 mm) through the
cranium of USNM 167622 Eurhinodel-
phis morrisi defining the total endocra-
nial volume. These images show the ex-
cellent contrast between fossil skull
bone and endocranial matrix.

Measuring Endocranial Volume
from CT

We used Scion Image, a PC-based ver-
sion of NIH Image, and Image J, a
Java-based version of NIH Image, to
digitally trace around the endocranial
cavity on each slice, integrate those
areas, and arrive at a volume for the
entire endocranial cavity. An outlined
coronal section is shown in section 82
of Figure 5. The calculated endocra-
nial volume is an estimate for the size
of the brain. For both fossil and mod-
ern specimens, the posterior portion
of the endocranial region was defined
as the most posterior coronal slice

Figure 5. Posterior-to-anterior series of 1.22-mm-thick coronal CT images at 24.4-mm intervals (except for the last, which is 22 mm) through
the cranium of USNM 167622, Eurhinodelphis morrisi. The endocranial cavity of section 82 is outlined to illustrate how measurements are
taken.
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containing a completely enclosed fo-
ramen. In fossil specimens, the ante-
rior extent was defined as the coronal
slice that includes the anterior edge of
the basisphenoid or the most anterior
coronal slice containing the frontal
bone where there is still endocranial
space. The use of one or the other of
these criteria depended on the cranial
morphology (e.g., degree of telescop-
ing) of the fossil specimen. In modern
specimens, the anterior extent was de-
fined as the most anterior coronal
slice containing the frontal bone
where there is still endocranial space.

The total volume of the endocranial
space is an overestimate of actual
brain size because it includes the vol-
ume of the cranial rete mirabile. To
estimate brain mass, we are currently
estimating the endocranial rete vol-
ume from total endocranial volume in
each specimen to obtain brain size es-
timates for use in calculating EQ val-
ues. Rete measurements and esti-
mates will be obtained either from the
literature, from direct measurement
when visible in the CT scans, or by

measuring clay model replicas of en-
docranial retes on existing natural en-
docasts.

Estimating Postcranial
Parameters

Body mass in fossil mammals has
been reconstructed using a variety of
methods. These methods rely on a
scaling relationship between single or
multiple body parts with body mass.
Tooth size (particularly molar size)
has been used in some mammals that
perform a great deal of oral process-
ing of food (Gingerich, 1977). The se-
lected molar is usually one that dis-
plays low within-species variability
(Gingerich, 1974) in an attempt to
maximize its potential correlation
with body size. Other methods have
used a variety of measurements from
long bones to predict body mass (Gin-
gerich, 1990). Because long bones re-
sist the force of gravity on the body
mass, their architecture should reflect
the ability to resist that force.

Neither of these methods is applica-

ble to fossil cetaceans. Cetacean teeth
are not good candidates for a tight
correlation with body mass for a vari-
ety of reasons. First, most mysticetes
lack teeth altogether. Second, most
odontocetes do not use their teeth for
oral processing, and some, again, lack
teeth (Uhen, 2002). Third, even ar-
chaeocetes, which retain a more typi-
cally mammalian differentiated denti-
tion, have dramatically changed their
mode of oral processing from that of
their terrestrial ancestors (O’Leary
and Uhen, 1999). Besides dentition,
long bone dimensions are even less
likely to be good predictors of body
mass because they no longer resist the
force of gravity in fully aquatic ceta-
ceans (Madar, 1998).

Two other methods of estimating
body weight have been previously
used on fossil cetaceans. First, Jerison
(1963) used a method of correlating
skeletal length and body mass. In
Marino et al. (2000), we adapted this
method for use on cetaceans by using
modern cetacean skeletal lengths and
known body masses to predict fossil
cetacean body mass from known skel-
etal lengths. This method assumes
that fossil cetaceans had a body form
similar to those of modern cetaceans.
This assumption is more likely to be
the case for fossil Neoceti and proba-
bly even the fully aquatic basilosaurid
archaeocetes but less likely to be the
case for the earlier semiaquatic ar-
chaeocetes. The second method of es-
timating body weight that has been
applied to fossil cetaceans is one de-
veloped by Gingerich (1998) that uses
a variety of anatomical measurements
from the head, vertebral column, and
limb elements to estimate body mass.
This method uses the relationships of
these variables in modern marine
mammals to estimate body mass in
fossil cetaceans. Although this
method shows a great deal of promise,
it uses a computer program to per-
form the calculation, which has not
yet been published.

In this study, we use both the body
length method and Gingerich’s
method (at least for those species to
which it has been previously applied).
We have also added a third method,
because very few fossil cetacean spec-
imens (much fewer species) include
entire skeletons from which one can
obtain a skeletal length or the multi-

Figure 6. Three-dimensional reconstructions of the endocranial space in specimen ChMPV
4266, Xenorophus sp. A: Left rostrolateral view. B: Ventral view. C: Dorsal view. D: Left lateral
view.
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ple anatomical measurements needed
to apply Gingerich’s method. Because
specimens were included in our CT
study if they had relatively intact crania,
we looked for a measurement of the
skull that was independent of brain size
that might be indicative of body size.
We selected the occipital condyle
breadth (OCB), because that was the
point where the head attached to the
body, so we were of the opinion that it
had the greatest potential to predict
body size of any cranial measurement.
We measured the OCB on a wide range
of modern cetacean specimens with
known body masses and found that it
was very strongly correlated with body
mass (Pearson r � 0.89). This strategy
allowed us to use that regression equa-
tion to estimate body mass from fossil
cetacean specimens where only the cra-
nium is known.

Calculating Encephalization
Quotients

As noted previously, encephalization
quotient is a measure of observed

brain size relative to expected brain
size for a species or genus. EQ values
are calculated from a least-squares re-
gression of log mean adult brain
weight on log mean adult body weight
for a given group. The equation, EQ �
brain weight/0.12 (body weight)0.67

from Jerison (1973) was used to de-
rive EQ values for each genus, or
when possible, each species, repre-
sented in our sample. EQ0.67 values
for the present sample may be inter-
preted as loosely expressing how en-
cephalized each genus or species is
with reference to a general modern
mammalian sample.

Three-Dimensional
Reconstruction Through CT

By using Image J software, we assem-
bled our three-dimensional endocra-
nial reconstructions by compiling
two-dimensional coronal outlines of
the CT-scanned endocrania. These
outlines were created by converting
the DICOM images to TIFF files using

the OSIRIS program and then tracing
the endocranial space on each image
with Adobe Photoshop 5.0. The poste-
rior–anterior extent of our outlines
were at the opening of the magnum
foramen and either the frontal bone
(in more recent specimens) or the
front region of the endocranium that
tapers off rapidly just posterior to ol-
factory lobe expansion. In some coro-
nal slices where the endocranial area
was unbounded or opened by cranial
nerves, it was necessary to delimit the
endocranial area using consistent en-
docranial landmarks. The final trac-
ings were then saved in a TIFF format.
We loaded the entire set of two-di-
mensional tracings for each endocra-
nium into Image J, and used Volume
Rendering plug-ins to reconstruct the
endocranium as a three-dimensional
object that could then be viewed at
different angles and shading.

Figure 6 displays a three-dimen-
sional reconstruction, in four differ-
ent views, of the endocranial space in
a late Oligocene specimen ChM
PV4266, Xenorophus sp. from the
Chandler Bridge formation, North
Carolina (approximately 27 Ma). Fig-
ure 7 displays a three-dimensional re-
construction of the endocranial space
in specimen USNM 167622, Eurhino-
delphis morrisi in four different views.
Both reconstructions appear to repre-
sent the shape of the brain without
any obvious distortions. As is the case
for most natural and artificial endo-
casts, it is not possible to detect and
reproduce the pattern of convolutions
that existed on the surface of the
brain. Therefore, interpretations must
be based almost entirely on overall
shape and morphology of gross struc-
tures.

RECONSTRUCTING CETACEAN
BRAINS

For the purposes of comparing the
reconstructed fossil specimens with
a modern cetacean brain, Figure 8,
which displays an MRI (Magnetic
Resonance Imaging)-based three-di-
mensional reconstruction of a mod-
ern bottlenose dolphin (Tursiops
truncatus; Field number WAM545)
brain from a previously published
study (Marino et al., 2001), is repro-
duced. Because of the recent age of
the specimen, some surface convolu-

Figure 7. Three-dimensional reconstructions of the endocranial space in specimen USNM
167622, Eurhinodelphis morrisi. A: Left laterocaudal view. B: Caudal view. C: Rostral view. D:
Right laterocaudal view.
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tional patterns are visible on the
three-dimensional reconstruction of
the bottlenose dolphin but the depth
of the gyri and sulci are not well
represented.

Although all of the present speci-
mens compared are odontocetes,
none of them are related along a sin-
gle ancestor–descendent lineage.
Therefore, the comparisons we make
here are for exemplification purposes
only and are not meant to suggest di-
rect evolutionary change. Yet, both
older fossil specimens (Xenorophus
sp., ChMPV4266 and Eurhinodelphis
morrisi, USNM167622) show a lesser
degree of cerebral elaboration than

the modern specimen (Tursiops trun-
catus, WAM545). There is a gradation
of cerebral development ascertainable
across all three, with the oldest speci-
men ChMPV 4266, showing the least
amount of bulbousness characteristic
of modern odontocete brains. ChMPV
4266 displays the more elongated ap-
pearance of archaeocete and earlier
cetacean specimens. Notably, the re-
constructions show that the olfactory
bulbs of the 27 million-year-old
ChMPV 4266 are still intact but that
they are considerably regressed and
essentially vestigial in the more recent
14 million-year-old USNM 167622
and completely gone in the modern

specimen. Generally, the overall mor-
phology of the cerebral hemispheres
of the more recent Eurhinodelphis
specimen more closely resembles the
modern odontocete brain than the
older Xenorophus specimen.

The EQ values associated with
ChMPV 4266, USNM 167622, and the
modern bottlenose dolphin, are ap-
proximately 3.28, 2.67, and 4.14, re-
spectively. All of these values indicate
that the three specimens had brains
larger than expected for their body
size. However, these EQ values do not
show a pattern of increasing enceph-
alization similar to the pattern of in-
creased morphologic development ob-
served. This is likely because there
was a wide range of encephalization
levels throughout most of cetacean
evolution (with values ranging from
less than 1 to more than 4.5) and these
specimens do not reflect an ancestor–
descendent lineage. The point here is

that these kinds of reconstructions,
considered with encephalization esti-
mates, can serve as the basis for much
more highly detailed and quantitative
morphologic comparisons of the pro-
portions and organization of whole
brains and brain structures across
specimens that, when registered to
our best estimate of phylogenetic re-
lations, can inform us directly about
the pattern of change that occurred in
various cetacean lineages.

BRAIN ELABORATION,
BEHAVIOR, AND FUNCTION

Cetacean brain evolution is an intrigu-
ing example of how large complex
brains can emerge from ordinary be-
ginnings. As noted above, apart from
modern humans, cetaceans are the
most highly encephalized mammals
that have likely ever existed. The en-
cephalization level of many modern

Figure 8. Reproduction of a three-dimensional reconstruction of the endocranial space in
a modern bottlenose dolphin specimen (WAM545) from MRI. Dorsal view (A) and rostral left
lateral view with ventral side exposed (B), from Marino et al. (2001).

Apart from modern
humans, cetaceans are

the most highly
encephalized mammals

that have likely ever
existed.
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odontocete species, particularly in the
Delphinid and Phocoenid families, ap-
proach modern human levels. This
level of brain elaboration exceeds that
achieved by even our closest phyloge-
netic relatives, the great apes (Marino,
1998). At the same time, we know
from modern comparative studies and
also from emerging fossil-based data
that the large brains of cetaceans
evolved along a strikingly different
trajectory from other mammalian
brains and, notably, from primate
brains (Glezer et al., 1988). The differ-
ences between cetacean and primate
brains exist at the level of gross mor-
phology, lobular arrangement, pro-
portions of subcortical structures, and
neocortical cytoarchitecture (Glezer
et al., 1988, for a review). There is also
a prodigious body of literature dem-
onstrating the complex nature of ceta-
cean intelligence (Herman, 1986; Re-
iss et al., 1997; Marino, 2002) that
rivals and converges with the abilities
of the great apes. For instance, bottle-
nose dolphins share the same ex-
tremely rare capacity for mirror self-
recognition with great apes and
humans (Reiss and Marino, 2001).
Therefore, by exploring the divergent
evolutionary natures of cetacean and
primate brains, we have an exciting
opportunity to probe questions about
alternative neuroanatomical avenues
to complex cognitive abilities.

The application of new noninvasive
imaging technologies, such as com-
puted tomography, have already
brought the study of primate and
hominid brain evolution to a new level
(Zollikofer et al., 1998). Here, we have
demonstrated how the same methods
can elucidate cetacean brain evolu-
tion and, thereby, make possible the
kinds of interesting comparative ques-
tions mentioned above. For the first
time, we can address specific hypoth-
eses about selective forces and tempo-
ral patterns in cetacean brain evolu-
tion through CT-based analyses of
brain morphology. This approach will
bring new rigor to the study of brain
size and morphologic evolution in
cetaceans and, thereby, new insights
into the neuroanatomical basis of
cetacean behavior and intelligence.

ACKNOWLEDGMENTS
Many thanks are extended to the fol-
lowing individuals for their assis-

tance, advice, and support: David Bo-
haska, Frank C. Whitmore, Jr., James
Mead, and Charles Potter, The Smith-
sonian Institution; Caroline Blane and
John I. Johnson, Michigan State Uni-
versity; Larry Barnes, Natural History
Museum of Los Angeles County;
Philip Gingerich, University of Michi-
gan; the Medical University of South
Carolina, Charleston, South Carolina;
and Methodist Hospital, Arcadia, Cal-
ifornia. The following students are to
be thanked for their assistance with
either scanning or data analysis: Evan
Garafalo, Shaun Rotenberg, and Behi
Shamsai.

LITERATURE CITED

Bajpai S, Gingerich PD. 1998. A new Eo-
cene archaeocete (Mammalia, Cetacea)
from India and the time of origin of
whales.ProcNatlAcadSciUSA95:15464–
15468.

Barnes LG. 1985. Review: General features
of the paleobiological evolution of Ceta-
cea. Mar Mammal Sci 1:90–93.

Barnes LG, Domning DP, Ray CE. 1985.
Status of studies on fossil marine mam-
mals. Mar Mammal Sci 1:15–53.

Breathnach AS. 1955. Observations on en-
docranial casts of recent and fossil ceta-
ceans. J Anat 89:533–546.

Buchholtz EA. 1998. Implications of verte-
bral morphology for locomotor evolu-
tion in early Cetacea. In: Thewissen
JGM, editor. The emergence of whales.
New York: Plenum Press. p 325–351.

Connor RC, Mann J, Tyack P, Whitehead
H. 1998. Social evolution in toothed
whales. Trends Ecol Evol 13:228–232.

Czyzewska T. 1988. Natural endocranial
casts of the whales Pinocetus polonicus
Czyzewska & Ryziewicz, 1976, from the
Pinczow Limestones (Middle Miocene;
southern slopes of the Holy Cross Moun-
tains, Central Poland). Acta Geol Pol 38:
46–49.

Dart R. 1923. The brain of the Zeuglodon-
tidae (Cetacea). Proc Zool Soc Lond
615–654.

Davies JL. 1963. The antitropical factor in
cetacean speciation. Evolution 17:107–
116.

Edinger T. 1955. Hearing and smell in
cetacean history. Monatsschr Psychiatr
Neurol 129:37–58.

Eisenberg JF. 1986. Dolphin behavior and
cognition: Evolutionary and ecological
aspects. In: Schusterman, RJ, Thomas
JA, Wood FG, editors. Dolphin cognition
and behavior: A comparative approach.
New Jersey: Lawrence Erlbaum. p 261–
270.

Gaskin DE. 1982. Evolution of cetacea. In:
Gaskin DE, editor. The ecology of whales
and dolphins. New York: Heinemann. p
159–199.

Gatesy J. 1998. Molecular evidence for the
phylogenetic affinities of cetacea. In:

Thewissen JGM, editor. The emergence
of whales. New York: Plenum Press. p
63–111.

Geisler JH, Uhen MD. 2003. New fossils
corroborate a close relationship between
hippos and whales. J Vertebr Paleontol
(in press).

Gingerich PD. 1974. Size variability of the
teeth in living mammals and the diagno-
sis of closely related sympatric fossil spe-
cies. J Paleontal 48:895–903.

Gingerich PD. 1977. Correlation of tooth
size and body size in living hominoid
primates, with a note on relative brain
size in Aegyptopithecus and Proconsul.
Am J Phys Anthropol 47:395–398.

Gingerich PD. 1990. Prediction of body
mass in mammalian species from long
bone lengths and diameters. Contrib
Museum Paleontal Univ Mich 28:79–92.

Gingerich PD. 1998. Paleobiological per-
spectives on Mesonychia, Archaeoceti,
and the origin of whales. In: Thewissen
JGM, editor. The emergence of whales.
New York: Plenum Press. p 423–449.

Gingerich PD, ul Haq M, Zalmout IS, Khan
IH, Sadiq M. 2001. Origin of whales
from early artiodactyls: Hands and feet
of Eocene Protocetidae from Pakistan.
Science 293:2239–2242.

Glezer I, Jacobs M, Morgane P. 1988. Im-
plications of the “initial brain” concept
for brain evolution in Cetacea. Behav
Brain Sci 11:75–116.

Herman LM. 1986. Cognition and lan-
guage competencies of bottlenosed dol-
phins. In: Schusterman RJ, Thomas JA,
Wood FG, editors. Dolphin cognition
and behavior: A comparative approach.
New Jersey: Lawrence Erlbaum. p 221–
252.

Jerison HJ. 1963. Interpreting the evolu-
tion of the brain. Hum Biol 35:263–291.

Jerison HJ. 1973. Evolution of the brain
and intelligence. New York: Academic
Press. 482 p.

Jerison HJ. 1978. Brain and intelligence in
whales. In: Frost S, editor. Whales and
whaling. Vol. 2. Canberra, Australia:
CJ Thompson. p 159–197.

Jerison HJ. 1986. The perceptual world of
dolphins. In: Schusterman RJ, Thomas
JA, Wood, FG, editors. Dolphin cogni-
tion and behavior: A comparative ap-
proach. New Jersey: Lawrence Erlbaum.
p 141–166.

Kellogg R. 1936. A review of the Archaeo-
ceti. Washington DC: Carnegie Institu-
tion of Washington. 366 p.

Luo Z. 1998. Homology and transforma-
tion of cetacean ectotympanic struc-
tures. In: Thewissen JGM, editor. The
emergence of whales. New York: Plenum
Press. p 269–301.

Madar SI. 1998. Structural adaptations of
early archaeocete long bones. In:
Thewissen, JGM, editor. The emergence
of whales. New York: Plenum Press. p
353–378.

Marino L. 1996. What can dolphins tell us
about primate evolution? Evol An-
thropol 5:81–85.

Marino L. 1998. A comparison of enceph-
alization levels between adult anthro-

116 THE ANATOMICAL RECORD (PART B: NEW ANAT.) FEATURE ARTICLE



poid primates and odontocetes (toothed
whales). Brain Behav Evol 51:230–238.

Marino L. 2002. Convergence in complex
cognitive abilities in cetaceans and pri-
mates. Brain Behav Evol 59:21–32.

Marino L, Uhen MD, Frohlich B, Aldag JM,
Blane C, Bohaska D, Whitmore FC Jr.
2000. Endocranial volume of mid-late
Eocene archaoecetes (Order: Cetacea)
revealed by computed tomography: Im-
plications for cetacean brain evolution. J
Mammal Evol 7:81–94.

Marino L, Sudheimer K, Murphy TL, Davis
KK, Pabst DA, McLellan W, Rilling JK,
Johnson JI. 2001. Anatomy and three-
dimensional reconstructions of the bot-
tlenose dolphin (Tursiops truncatus)
brain from magnetic resonance images.
Anat Rec 264:397–414.

Marples BJ. 1949. Two endocranial casts
of cetaceans from the Oligocene of New
Zealand. Am J Sci 247:462–471.

Milinkovitch MC, Berube M, Palsboll PJ.
1998. Cetaceans are highly derived artio-
dactyls. In: Thewissen JGM, editor. The
emergence of whales. New York: Plenum
Press. p 113–131.

Mitchell ED. 1989. A new cetacean from
the late Eocene La Meseta Formation,
Seymour Island, Antarctic Peninsula.
Can J Fish Aquat Sci 46:2219–2235.

Nikaido M, Rooney AP, Okada N. 1996.
Phylogenetic relationships among cetar-
tiodactyls based on insertions of short
and long interspersed elements: Hippo-
potamuses are the closest extant rela-
tives of whales. Proc Natl Acad Sci USA
96:10261–10266.

Oelschlager HA. 1990. Evolutionary mor-
phology and acoustics in the dolphin

skull. In: Thomas J, Kastelein R, editors.
Sensory abilities of cetaceans. New
York: Plenum Press. p 137–162.

O’leary MA, Uhen MD. 1999. The time of
origin of whales and the role of behav-
ioral changes in the terrestrial-aquatic
transition. Paleobiol 25:534–556.

Reiss D, Marino L. 2001. Mirror self-recog-
nition in the bottlenose dolphin: A case
of cognitive convergence. Proc Natl Acad
Sci USA 98:5937–5942.

Reiss D, McCowan B, Marino L. 1997.
Communicative and other cognitive
characteristics of bottlenose dolphins.
Trends Cogn Sci 1:140–145.

Ridgway SH, Wood FG. 1988. Dolphin
brain evolution. Behav Brain Sci 11:99–
100.

Ridgway SH, Flanigan N, McCormick J.
1966. Brain-spinal cord ratios in por-
poises: Possible correlations with intelli-
gence and ecology. Psychon Sci 6:491–
492.

Robin ED. 1973. The evolutionary advan-
tages of being stupid. Perspect Biol Med
16:359–380.

Shimamura M, Yasue H, Ohshima K, Abe
H, Kato H, Kishiro T, Goto M, Mu-
nechika I, Okada N. 1997. Molecular ev-
idence from retroposons that whales
form a clade within even-toed ungulates.
Nature 388:666–671.

Stefaniak K. 1993. Natural endocranial
cast of a delphinid (Cetacea, Delphini-
dae) from the Pinczow Limestones (Mid-
dle Miocene; Holy Cross Mountains,
Central Poland). Acta Geol Pol 43:116–
119.

Thewissen JGM. 1998. Cetacean origins.
In: Thewissen JGM, editor. The emer-
gence of whales. New York: Plenum
Press. p 451–464.

Thewissen JGM, Williams EM, Roe LJ,
Hussain ST. 2001. Skeletons of terres-
trial cetaceans and the relationship of
whales to artiodactyls. Nature 413:277–
281.

Uhen MD. 1998. New protocetid (Mamma-
lia, Cetacea) from the late middle Eo-
cene Cook Mountain Formation of Lou-
isiana. J Vertebr Paleontal 18:664–668.

Uhen MD. 2002. Dental morphology (ceta-
cean), Evolution of,. In: Perrin WF, Wur-
sig B, Thewissen JGM, editors. Encyclo-
pedia of marine mammals. San Diego:
Academic Press. p 316–319.

Whitmore FC Jr. 1994. Neogene climatic
change and the emergence of the mod-
ern whale fauna of the North Atlantic
ocean. In: Berta A, Demere TA, editors.
Contributions in marine mammal pale-
ontology honoring Frank C. Whitmore
Jr. Proceeding of the San Diego Society
of Natural History, San Diego, CA. p
223–227.

Wood FG, Evans WE. 1980. Adaptiveness
and ecology of echolocation in toothed
whales. In: Busnel R, Fish J, editors. An-
imal sonar systems. New York: Plenum
Press. p 381–426.

Worthy GA, Hickie JP. 1986. Relative brain
size in marine mammals. Am Nat 128:
445–459.

Zollikofer CPE, Ponce de Leon MS, Martin
RD. 1998. Computer-assisted paleoan-
thropology. Evol Anthro 6:41–54.

FEATURE ARTICLE THE ANATOMICAL RECORD (PART B: NEW ANAT.) 117


	Reconstructing Cetacean Brain Evolution Using Computed Tomography
	Recommended Citation

	Reconstructing cetacean brain evolution using computed tomography

