157 research outputs found

    Mutation rate at commonly used forensic STR loci: Paternity testing experience

    Get PDF
    Abstract. Paternity tests are carried out by the analysis of hypervariable short tandem repeat DNA loci. These microsatellite sequences mutate at a higher rate than that of bulk DNA. The occurrence of germline mutations at STR loci posses problems in interpretation of resulting genetic profiles. We recently analyzed 59-159 parent/child allele transfers at 13 microsatellite loci. We identified 12 mutations in 7 microsatellite loci. No mutations were occurred in other 6 loci. The highest mutation rate was observed with 5 mutations at D8S1179 locus at different alleles. The event was always single repeat related. The mutation rate was between 0 and 1.5 × 10 −2 per locus per gamete per generation. The mutation event is very crucial for forensic DNA testing and accumulation of STR mutation data is extremely important for genetic profile interpretation

    Mutation Rate at Commonly Used Forensic STR Loci: Paternity Testing Experience

    Get PDF
    Paternity tests are carried out by the analysis of hypervariable short tandem repeat DNA loci. These microsatellite sequences mutate at a higher rate than that of bulk DNA. The occurrence of germline mutations at STR loci posses problems in interpretation of resulting genetic profiles. We recently analyzed 59–159 parent/child allele transfers at 13 microsatellite loci. We identified 12 mutations in 7 microsatellite loci. No mutations were occurred in other 6 loci. The highest mutation rate was observed with 5 mutations at D8S1179 locus at different alleles. The event was always single repeat related. The mutation rate was between 0 and 1.5 x 10(-2) per locus per gamete per generation. The mutation event is very crucial for forensic DNA testing and accumulation of STR mutation data is extremely important for genetic profile interpretation

    Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathobiology of schizophrenia is still unclear. Its current treatment mainly depends on antipsychotic drugs. A leading adverse effect of these medications is the acquired long QT syndrome, which results from the blockade of cardiac HERG1 channels (human ether-a-go-go-related gene potassium channels 1) by antipsychotic agents. The HERG1 channel is encoded by <it>HERG1 </it>(<it>KCNH2</it>, <it>Kv11.1</it>) gene and is most highly expressed in heart and brain. Genetic variations in <it>HERG1 </it>predispose to acquired long QT syndrome. We hypothesized that the blockade of HERG1 channels by antipsychotics might also be significant for their therapeutic mode of action, indicating a novel mechanism in the pathogenesis of schizophrenia.</p> <p>Methods</p> <p>We genotyped four single nucleotide polymorphisms (SNPs) in 7q36.1 region (two SNPs, rs1805123 and rs3800779, located on <it>HERG1</it>, and two SNPs, rs885684 and rs956642, at the 3'-downstream intergenic region) and then performed single SNP and haplotype association analyses in 84 patients with schizophrenia and 74 healthy controls after the exclusion of individuals having prolonged or shortened QT interval on electrocardiogram.</p> <p>Results</p> <p>Our analyses revealed that both genotype and allele frequencies of rs3800779 (c.307+585G>T) were significantly different between populations (<it>P </it>= 0.023 and <it>P </it>= 0.018, respectively). We also identified that two previously undescribed four-marker haplotypes which are nearly allelic opposite of each other and located in chr7:150225599-150302147bp position encompassing <it>HERG1 </it>were either overrepresented (A-A-A-T, the at-risk haplotype, <it>P </it>= 0.0007) or underrepresented (C-A-C-G, the protective haplotype, <it>P </it>= 0.005) in patients compared to controls.</p> <p>Conclusions</p> <p>Our results indicate that the potassium channel gene <it>HERG1 </it>is related to schizophrenia. Our findings may also implicate the whole family of HERG channels (HERG1, HERG2 and HERG3) in the pathogenesis of psychosis and its treatment.</p

    Gene expression analysis reveals a strong signature of an interferon induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer

    Full text link
    On the basis of epidemiological studies, infection was suggested to play a role in the etiology of human cancer. While for some cancers such a role was indeed demonstrated, there is no direct biological support for the role of viral pathogens in the pathogenesis of childhood leukemia. Using a novel bioinformatic tool, that alternates between clustering and standard statistical methods of analysis, we performed a "double blind" search of published gene expression data of subjects with different childhood ALL subtypes, looking for unanticipated partitions of patients, induced by unexpected groups of genes with correlated expression. We discovered a group of about thirty genes, related to the interferon response pathway, whose expression levels divide the ALL samples into two subgroups; high in 50, low in 285 patients. Leukemic subclasses prevalent in early childhood (the age most susceptible to infection) are over-represented in the high expression subgroup. Similar partitions, induced by the same genes, were found also in breast and ovarian cancer but not in lung cancer, prostate cancer and lymphoma. About 40% of breast cancer samples expressed the "interferon- related" signature. It is of interested that several studies demonstrated MMTV-like sequences in about 40% of breast cancer samples. Our discovery of an unanticipated strong signature of an interferon induced pathway provides molecular support for a role for either inflammation or viral infection in the pathogenesis of childhood leukemia as well as breast and ovarian cancer

    Minimal residual disease (MRD) detection with translocations and T-cell receptor and immunoglobulin gene rearrangements in adult acute lymphoblastic leukemia patients: a pilot study

    Get PDF
    Objective: Monitoring minimal residual disease has become increasingly important in clinical practice of ALL management. Break-point fusion regions of leukaemia related chromosomal aberrations and rearranged immunoglobulin (Ig) and T cell-receptor (TCR) genes are used as leukaemia specific markers in genetic studies of MRD.Material and Methods: A total of 31 consecutive patients with newly diagnosed ALL were screened for eligibility criteria. Of those 26 were included in the study. One patient with partial response following induction therapy and four patients who were lost to follow-up after induction were excluded from the study; thus 21 patients were evaluated for MRD by using polymerase chain reaction (PCR), heteroduplex analysis, sequencing and quantitative real time PCR techniques. Results: Chromosomal aberrations were detected in 5 (24%) of the patients and were used for MRD monitoring. Three patients had t(9;22) translocation, the other 2 had t(4;11) and t(1;19). MRD-based risk stratification of the16 patients analysed for Ig/TCR rearrangements revealed 3 low-risk, 11 intermediate-risk and 2 high-risk patients.Conclusion: MRD monitoring is progressively getting to be a more important predictive factor in adult ALL patients. As reported by others confirmed by our limited data there is a good correlation between MRD status and clinical outcome in patients receiving chemotherapy. The pilot-study presented here is the first that systematically and consecutively performs a molecular MRD monitoring of ALL patients in Turkey

    Clinical and genetic spectrum of an orphan disease MPAN: a series with new variants and a novel phenotype

    Get PDF
    Introduction. Pathogenic variations in C19orf12 are responsible for two allelic diseases: mitochondrial membrane protein-associated neurodegeneration (MPAN); and spastic paraplegia type 43 (SPG43). MPAN is an orphan disease, which presents with spasticity, dystonia, peripheral nerve involvement, and dementia. The pattern of iron accumulation on brain MRI may be a clue for the diagnosis of MPAN. SPG43, on the other hand, is characterised by progressive lower limb spasticity without brain iron accumulation. We here present clinical and genetic findings of MPAN patients with potentially pathogenic C19orf12 variants.Materials and methods. Patients from 13 different families having progressive motor symptoms with irritative pyramidal signs and brain iron accumulation were screened for C19orf12 gene variants.Results. C19orf12 screening identified seven variants associated with MPAN in eight patients from seven families. We associated two pathogenic variants (c.24G &gt; C; p.(Lys8Asn) and c.194G &gt; A; p.(Gly65Glu)) with the MPAN phenotype for the first time. We also provided a genetic diagnosis for a patient with an atypical MPAN presentation. The variant c.32C &gt; T; p.(Thr11Met), common to Turkish adult-onset MPAN patients, was also detected in two unrelated late-onset MPAN patients.Conclusions. Genetic analysis along with thorough clinical analysis supported by radiological findings will aid the differential diagnosis of MPAN within the neurodegeneration with brain iron accumulation spectrum as well as other disorders including hereditary spastic paraplegia. Dystonia and parkinsonism may not be the leading clinical findings in MPAN patients, as these are absent in the atypical case. Finally, we emphasise that the existence of frameshifting variants may bias the age of onset toward childhood

    Undiagnosed diseases: Needs and opportunities in 20 countries participating in the Undiagnosed Diseases Network International

    Get PDF
    Introduction: Rare diseases (RD) are a health priority worldwide, overall affecting hundreds of millions of people globally. Early and accurate diagnosis is essential to support clinical care but remains challenging in many countries, especially the low- and medium-income ones. Hence, undiagnosed RD (URD) account for a significant portion of the overall RD burden. Methods: In October 2020, the Developing Nations Working Group of the Undiagnosed Diseases Network International (DNWG-UDNI) launched a survey among its members, belonging to 20 countries across all continents, to map unmet needs and opportunities for patients with URD. The survey was based on questions with open answers and included eight different domains. Conflicting interpretations were resolved in contact with the partners involved. Results: All members responded to the survey. The results indicated that the scientific and medical centers make substantial efforts to respond to the unmet needs of patients. In most countries, there is a high awareness of RD issues. Scarcity of resources was highlighted as a major problem, leading to reduced availability of diagnostic expertise and research. Serious equity in accessibility to services were highlighted both within and between participating countries. Regulatory problems, including securing informed consent, difficulties in sending DNA to foreign laboratories, protection of intellectual property, and conflicts of interest on the part of service providers, remain issues of concern. Finally, most respondents stressed the need to strengthen international cooperation in terms of data sharing, clinical research, and diagnostic expertise for URD patients in low and medium income countries. Discussion: The survey highlighted that many countries experienced a discrepancy between the growing expertise and scientific value, the level of awareness and commitment on the part of relevant parties, and funding bodies. Country-tailored public health actions, including general syllabus of medical schools and of the education of other health professionals, are needed to reduce such gaps.VSh is supported by Health Systems Research Institute of Thailand (65-040). SJ is supported by National Medical Research Council, Singapore (Grants ID CSAINV21jun-0003 and CIRG22jul-0003).S

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome
    corecore