9 research outputs found

    Early bronchopulmonary involvement in Crohn disease: a case report

    Get PDF
    BACKGROUND: Bronchopulmonary manifestations of Crohn disease have been rarely described in children, including both subclinical pulmonary involvement and severe lung disease. CASE PRESENTATION: A 6.5-year-old girl is described with early recurrent bronchopulmonary symptoms both at presentation and in the quiescent phase of Crohn disease. Pulmonary function tests (lung volumes and flows, bronchial reactivity and carbon monoxide diffusing capacity) were normal. Bronchoalveolar cytology showed increased (30%) lymphocyte counts and bronchial biopsy revealed thickening of basal membrane and active chronic inflammation. CONCLUSIONS: Clinical and histological findings in our young patient suggest involvement of both distal and central airways in an early phase of lung disease. The pathogenesis of Crohn disease-associated lung disorders is discussed with reference to the available literature. A low threshold for pulmonary evaluation seems to be advisable in all children with CD

    Gamma-Ray Burst observations by the high-energy charged particle detector on board the CSES-01 satellite between 2019 and 2021

    Full text link
    In this paper we report the detection of five strong Gamma-Ray Bursts (GRBs) by the High-Energy Particle Detector (HEPD-01) mounted on board the China Seismo-Electromagnetic Satellite (CSES-01), operational since 2018 on a Sun-synchronous polar orbit at a ∼\sim 507 km altitude and 97∘^\circ inclination. HEPD-01 was designed to detect high-energy electrons in the energy range 3 - 100 MeV, protons in the range 30 - 300 MeV, and light nuclei in the range 30 - 300 MeV/n. Nonetheless, Monte Carlo simulations have shown HEPD-01 is sensitive to gamma-ray photons in the energy range 300 keV - 50 MeV, even if with a moderate effective area above ∼\sim 5 MeV. A dedicated time correlation analysis between GRBs reported in literature and signals from a set of HEPD-01 trigger configuration masks has confirmed the anticipated detector sensitivity to high-energy photons. A comparison between the simultaneous time profiles of HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A, GRB200826B and GRB211211A has shown a remarkable similarity, in spite of the different energy ranges. The high-energy response, with peak sensitivity at about 2 MeV, and moderate effective area of the detector in the actual flight configuration explain why these five GRBs, characterised by a fluence above ∼\sim 3 ×\times 10−5^{-5} erg cm−2^{-2} in the energy interval 300 keV - 50 MeV, have been detected.Comment: Accepted for publication in The Astrophysical Journal (ApJ

    Fiori sull'argine

    No full text
    Fiori sull'argine / Ugo Zannoni. - Torino : SEI, stampa 1940 Dedica manoscritta dell'autore: Queste liriche ispirate / dalla mia funzione educativa, / per diventare piccolo dono di paternita' / per i giovani delle nostre scuole, / con animo offro devoto e ammirato all'Ecc. Emilio Bodrero Reggitore della scuola italiana in questa solare ora di gloria. Ugo Zannoni. Vicenza Marzo 1941 XIX https://galileodiscovery.unipd.it/discovery/fulldisplay?context=L&vid=39UPD_INST:VU1&search_scope=MyInst_and_CI&tab=Everything&docid=alma99000156623020604

    Statue of Dante

    No full text

    INTEGRAL reloaded: Spacecraft, instruments and ground system

    No full text
    The European Space Agency's INTErnational Gamma-Ray Astrophysics Laboratory (ESA/INTEGRAL) was launched aboard a Proton-DM2 rocket on 17 October 2002 at 06:41 CEST, from Baikonur in Kazakhstan. Since then, INTEGRAL has been providing long, uninterrupted observations (up to about 47h, or 170ksec, per satellite orbit of 2.7 days) with a large field-of-view (FOV, fully coded: 100 deg), millisecond time resolution, keV energy resolution, polarization measurements, as well as additional wavelength coverage at optical wavelengths. This is realized by two main instruments in the 15keV to 10MeV energy range, the spectrometer SPI (spectral resolution 3keV at 1.8MeV) and the imager IBIS (angular resolution: 12arcmin FWHM), complemented by X-ray (JEM-X; 3–35keV) and optical (OMC; Johnson V-band) monitor instruments. All instruments are co-aligned to simultaneously observe the target region. A particle radiation monitor (IREM) measures charged particle fluxes near the spacecraft. The Anti-coincidence subsystems of the main instruments, built to reduce the background, are also very efficient all-sky γ-ray detectors, which provide virtually omni-directional monitoring above ∼75keV. Besides the long, scheduled observations, INTEGRAL can rapidly (within a couple of hours) re-point and conduct Target of Opportunity (ToO) observations on a large variety of sources. INTEGRAL observations and their scientific results have been building an impressive legacy: The discovery of currently more than 600 new high-energy sources; the first-ever direct detection of Ni and Co radio-active decay lines from a Type Ia supernova; spectroscopy of isotopes from galactic nucleo-synthesis sources; new insights on enigmatic positron annihilation in the Galactic bulge and disk; and pioneering gamma-ray polarization studies. INTEGRAL is also a successful actor in the new multi-messenger astronomy introduced by non-electromagnetic signals from gravitational waves and from neutrinos: INTEGRAL found the first prompt electromagnetic radiation in coincidence with a binary neutron star merger. Up to now more than 1750 scientific papers based on INTEGRAL data have been published in refereed journals. In this paper, we will give a comprehensive update of the satellite status after more than 18 years of operations in a harsh space environment, and an account of the successful Ground Segment.Kuulkers, Erik, et al.he OMC team has been funded by different Spanish grants, including Spanish State Research Agency grants PID2019–107061GB–C61 and MDM–2017-0737 (Unidad de Excelencia María de Maeztu – CAB). The INTEGRAL French teams acknowledge partial funding from the French Space Agency (CNES). The Danish JEM-X gratefully acknowledges support from the Danish PRODEX delegation through contract C90057. The INTEGRAL Italian team acknowledges support form the Italian Space Agency, ASI, along these years via different agreements, last of which is 2019–35-HH.0. LH acknowledges support from SFI under grant 19/FFP/6777 and the EU AHEAD2020 project (grant agreement 871158). MH acknowledges support from Spanish MICINN grant PID2019-108709GB-I00. TS is supported by the German Research Society (DFG-Forschungsstipendium SI 2502/1-1 & SI 2502/3-1)

    Evidence of an upper ionospheric electric field perturbation correlated with a gamma ray burst

    No full text
    Abstract Earth’s atmosphere, whose ionization stability plays a fundamental role for the evolution and endurance of life, is exposed to the effect of cosmic explosions producing high energy Gamma-ray-bursts. Being able to abruptly increase the atmospheric ionization, they might deplete stratospheric ozone on a global scale. During the last decades, an average of more than one Gamma-ray-burst per day were recorded. Nevertheless, measurable effects on the ionosphere were rarely observed, in any case on its bottom-side (from about 60 km up to about 350 km of altitude). Here, we report evidence of an intense top-side (about 500 km) ionospheric perturbation induced by significant sudden ionospheric disturbance, and a large variation of the ionospheric electric field at 500 km, which are both correlated with the October 9, 2022 Gamma-ray-burst (GRB221009A)

    INTEGRAL reloaded: Spacecraft, instruments and ground system

    No full text
    International audienceThe European Space Agency’s INTErnational Gamma-Ray Astrophysics Laboratory (ESA/INTEGRAL) was launched aboard a Proton-DM2 rocket on 17 October 2002 at 06:41 CEST, from Baikonur in Kazakhstan. Since then, INTEGRAL has been providing long, uninterrupted observations (up to about 47h, or 170ksec, per satellite orbit of 2.7 days) with a large field-of-view (FOV, fully coded: 100 deg2), millisecond time resolution, keV energy resolution, polarization measurements, as well as additional wavelength coverage at optical wavelengths. This is realized by two main instruments in the 15keV to 10MeV energy range, the spectrometer SPI (spectral resolution 3keV at 1.8MeV) and the imager IBIS (angular resolution: 12arcmin FWHM), complemented by X-ray (JEM-X; 3–35keV) and optical (OMC; Johnson V-band) monitor instruments. All instruments are co-aligned to simultaneously observe the target region. A particle radiation monitor (IREM) measures charged particle fluxes near the spacecraft. The Anti-coincidence subsystems of the main instruments, built to reduce the background, are also very efficient all-sky γ-ray detectors, which provide virtually omni-directional monitoring above ∼75keV. Besides the long, scheduled observations, INTEGRAL can rapidly (within a couple of hours) re-point and conduct Target of Opportunity (ToO) observations on a large variety of sources. INTEGRAL observations and their scientific results have been building an impressive legacy: The discovery of currently more than 600 new high-energy sources; the first-ever direct detection of 56Ni and 56Co radio-active decay lines from a Type Ia supernova; spectroscopy of isotopes from galactic nucleo-synthesis sources; new insights on enigmatic positron annihilation in the Galactic bulge and disk; and pioneering gamma-ray polarization studies. INTEGRAL is also a successful actor in the new multi-messenger astronomy introduced by non-electromagnetic signals from gravitational waves and from neutrinos: INTEGRAL found the first prompt electromagnetic radiation in coincidence with a binary neutron star merger. Up to now more than 1750 scientific papers based on INTEGRAL data have been published in refereed journals. In this paper, we will give a comprehensive update of the satellite status after more than 18 years of operations in a harsh space environment, and an account of the successful Ground Segment
    corecore