260 research outputs found

    Spherically symmetric relativistic stellar structures

    Full text link
    We investigate relativistic spherically symmetric static perfect fluid models in the framework of the theory of dynamical systems. The field equations are recast into a regular dynamical system on a 3-dimensional compact state space, thereby avoiding the non-regularity problems associated with the Tolman-Oppenheimer-Volkoff equation. The global picture of the solution space thus obtained is used to derive qualitative features and to prove theorems about mass-radius properties. The perfect fluids we discuss are described by barotropic equations of state that are asymptotically polytropic at low pressures and, for certain applications, asymptotically linear at high pressures. We employ dimensionless variables that are asymptotically homology invariant in the low pressure regime, and thus we generalize standard work on Newtonian polytropes to a relativistic setting and to a much larger class of equations of state. Our dynamical systems framework is particularly suited for numerical computations, as illustrated by several numerical examples, e.g., the ideal neutron gas and examples that involve phase transitions.Comment: 23 pages, 25 figures (compressed), LaTe

    Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric

    Get PDF
    The dynamics of a class of cosmological models with collisionless matter and four Killing vectors is studied in detail and compared with that of corresponding perfect fluid models. In many cases it is possible to identify asymptotic states of the spacetimes near the singularity or in a phase of unlimited expansion. Bianchi type II models show oscillatory behaviour near the initial singularity which is, however, simpler than that of the mixmaster model.Comment: 27 pages, 3 figures, LaTe

    Matter and dynamics in closed cosmologies

    Full text link
    To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein's field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein's static model, we present a comprehensive dynamical description, which includes asymptotic behavior, of models in the neighborhood of the Einstein model; these results make earlier claims about ``homoclinic phenomena and chaos'' highly questionable. We also discuss aspects of the global asymptotic dynamics, in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results.Comment: 23 pages, 24 figures (compressed), LaTe

    An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe

    Get PDF
    In this letter we will show that, contrary to what is widely believed, an almost isotropic cosmic microwave background (CMB) temperature does not imply that the universe is ``close to a Friedmann-Lemaitre universe''. There are two important manifestations of anisotropy in the geometry of the universe, (i) the anisotropy in the overall expansion, and (ii) the intrinsic anisotropy of the gravitational field, described by the Weyl curvature tensor, although the former usually receives more attention than the latter in the astrophysical literature. Here we consider a class of spatially homogeneous models for which the anisotropy of the CMB temperature is within the current observational limits but whose Weyl curvature is not negligible, i.e. these models are not close to isotropy even though the CMB temperature is almost isotropic.Comment: 5 pages (AASTeX, aaspp4.sty), submitted to Astrophysical Journal Letter

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    Tilted two-fluid Bianchi type I models

    Full text link
    In this paper we investigate expanding Bianchi type I models with two tilted fluids with the same linear equation of state, characterized by the equation of state parameter w. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. We prove that when w=0 the model isotropizes to the future. Using numerical simulations and a linear analysis we also find the asymptotic states of models with w>0. We find that future isotropization occurs if and only if w≤1/3w \leq 1/3. The results are compared to similar models investigated previously where the two fluids have different equation of state parameters.Comment: 14 pages, 3 figure

    Theory of Newtonian self-gravitating stationary spherically symmetric systems

    No full text
    We investigate spherically symmetric equilibrium states of the Vlasov-Poisson system, relevant in galactic dynamics. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a region with compact closure.Based on a dynamical systems analysis we derive theorems that guarantee that the steady state solutions have finite mass and compact support

    Third rank Killing tensors in general relativity. The (1+1)-dimensional case

    Get PDF
    Third rank Killing tensors in (1+1)-dimensional geometries are investigated and classified. It is found that a necessary and sufficient condition for such a geometry to admit a third rank Killing tensor can always be formulated as a quadratic PDE, of order three or lower, in a Kahler type potential for the metric. This is in contrast to the case of first and second rank Killing tensors for which the integrability condition is a linear PDE. The motivation for studying higher rank Killing tensors in (1+1)-geometries, is the fact that exact solutions of the Einstein equations are often associated with a first or second rank Killing tensor symmetry in the geodesic flow formulation of the dynamics. This is in particular true for the many models of interest for which this formulation is (1+1)-dimensional, where just one additional constant of motion suffices for complete integrability. We show that new exact solutions can be found by classifying geometries admitting higher rank Killing tensors.Comment: 16 pages, LaTe
    • …
    corecore