117 research outputs found

    Delivery of a Salmonella Typhi Exotoxin from a Host Intracellular Compartment

    Get PDF
    SummarySalmonella Typhi, an exclusive human pathogen and the cause of typhoid fever, expresses a functional cytolethal distending toxin for which only the active subunit, CdtB, has been identified. Here, we show that PltA and PltB, which are encoded in the same pathogenicity islet as cdtB, associate with CdtB to form a multipartite toxin. PltA and PltB are homologs of components of the pertussis toxin, including its ADP-ribosyl transferase subunit. We also show that PltA and PltB are required for the delivery of CdtB from an intracellular compartment to target cells via autocrine and paracrine pathways. We hypothesize that this toxin, which we have named “typhoid toxin,” and its delivery mechanism may contribute to S. Typhi's unique virulence properties

    Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria

    Get PDF
    Based on unique, coherent properties of phylogenetic analysis, key amino acid substitutions and structural modeling, we have identified a new class of unusual microbial rhodopsins related to the Anabaena sensory rhodopsin (ASR) protein, including multiple homologs not previously recognized. We propose the name xenorhodopsin for this class, reflecting a taxonomically diverse membership spanning five different Bacterial phyla as well as the Euryarchaeotal class Nanohaloarchaea. The patchy phylogenetic distribution of xenorhodopsin homologs is consistent with historical dissemination through horizontal gene transfer. Shared characteristics of xenorhodopsin-containing microbes include the absence of flagellar motility and isolation from high light habitats

    An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence

    Get PDF
    Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis

    A bacterial glycoengineered antigen for improved serodiagnosis of porcine brucellosis

    Get PDF
    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glycoiELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.Fil: Cortina, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Balzano, Rodrigo E.. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Rey Serantes, Diego A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Caillava, Ana Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Elena, Sebastian. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Ferreira, A. C.. Instituto Nacional de Investigação Agrária e Veterinária; PortugalFil: Nicola, Ana M.. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; ArgentinaFil: Ugalde, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Comerci, Diego José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Ciocchini, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentin

    Development and Validation of a Novel Diagnostic Test for Human Brucellosis Using a Glyco-engineered Antigen Coupled to Magnetic Beads.

    Get PDF
    Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA) as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis) and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations with limited laboratory infrastructure and/or minimally trained community health workers.Fil: Ciocchini, Andres Eduardo. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús (San Martin); Argentina;Fil: Rey Serantes, Diego A.. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús (San Martin); Argentina;Fil: Melli, Luciano Jorge. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús (San Martin); Argentina;Fil: Iwashkiw, Jeremy A.. University of Alberta . Department of Biological Sciences . Alberta Glycomics Centre; Estados Unidos de América;Fil: Deodato, Bettina. Hospital Múñiz. Unidad de Enfermedades Infecciosas; Argentina;Fil: Wallach, Jorge. Hospital Múñiz. Unidad de Enfermedades Infecciosas; Argentina;Fil: Feldman, Mario F. University of Alberta . Department of Biological Sciences . Alberta Glycomics Centre; Estados Unidos de América;Fil: Ugalde, Juan E. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús (San Martin); Argentina;Fil: Comerci, Diego J. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús (San Martin); Argentina

    Development and evaluation of a novel VHH-based immunocapture assay for high-sensitivity detection of Shiga toxin type 2 (Stx2) in stool samples

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti- Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotinstreptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).Fil: Melli, Luciano Jorge. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Zylberman, Vanesa. Inmunova; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hiriart, Yanina. Inmunova; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lauche, Constanza E.. Inmunova; ArgentinaFil: Baschkier, Ariela. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Pardo, Romina. Inmunova; ArgentinaFil: Miliwebsky, Elizabeth. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Chinen, Isabel. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Rivas, Marta. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Goldbaum, Fernando A.. Inmunova; ArgentinaFil: Ugalde, Juan Esteban. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Comerci, Diego José. Inmunova; Argentina. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Ciocchini, Andres Eduardo. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentin

    Digital Therapeutics Care Utilizing Genetic and Gut Microbiome Signals for the Management of Functional Gastrointestinal Disorders: Results From a Preliminary Retrospective Study

    Get PDF
    Diet and lifestyle-related illnesses including functional gastrointestinal disorders (FGIDs) and obesity are rapidly emerging health issues worldwide. Research has focused on addressing FGIDs via in-person cognitive-behavioral therapies, diet modulation and pharmaceutical intervention. Yet, there is paucity of research reporting on digital therapeutics care delivering weight loss and reduction of FGID symptom severity, and on modeling FGID status and symptom severity reduction including personalized genomic SNPs and gut microbiome signals. Our aim for this study was to assess how effective a digital therapeutics intervention personalized on genomic SNPs and gut microbiome signals was at reducing symptomatology of FGIDs on individuals that successfully lost body weight. We also aimed at modeling FGID status and FGID symptom severity reduction using demographics, genomic SNPs, and gut microbiome variables. This study sought to train a logistic regression model to differentiate the FGID status of subjects enrolled in a digital therapeutics care program using demographic, genetic, and baseline microbiome data. We also trained linear regression models to ascertain changes in FGID symptom severity of subjects at the time of achieving 5% or more of body weight loss compared to baseline. For this we utilized a cohort of 177 adults who reached 5% or more weight loss on the Digbi Health personalized digital care program, who were retrospectively surveyed about changes in symptom severity of their FGIDs and other comorbidities before and after the program. Gut microbiome taxa and demographics were the strongest predictors of FGID status. The digital therapeutics program implemented, reduced the summative severity of symptoms for 89.42% (93/104) of users who reported FGIDs. Reduction in summative FGID symptom severity and IBS symptom severity were best modeled by a mixture of genomic and microbiome predictors, whereas reduction in diarrhea and constipation symptom severity were best modeled by microbiome predictors only. This preliminary retrospective study generated diagnostic models for FGID status as well as therapeutic models for reduction of FGID symptom severity. Moreover, these therapeutic models generate testable hypotheses for associations of a number of biomarkers in the prognosis of FGIDs symptomatology

    Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at cáhuil lagoon, chile.

    Get PDF
    Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity

    Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity

    Get PDF
    In chloroplasts, stromal and thylakoid-bound ascorbate peroxidases (tAPX) play a major role in the removal of H2O2 produced during photosynthesis. Here, we report that hexaploid wheat (Triticum aestivum) expresses three homeologous tAPX genes (TaAPX-6A, TaAPX-6B, and TaAPX-6D) mapping on group-6 chromosomes. The tAPX activity of a mutant line lacking TaAPX-6B was 40% lower than that of the wild type. When grown at high-light intensity photosystem II electron transfer, photosynthetic activity and biomass accumulation were significantly reduced in this mutant, suggesting that tAPX activity is essential for photosynthesis. Despite the reduced tAPX activity, mutant plants did not exhibit oxidative damage probably due to the reduced photochemical activity. This might be the result of a compensating mechanism to prevent oxidative damage having as a consequence a decrease in growth of the tAPX mutant plants.Instituto de Fisiología VegetalFacultad de Ciencias Agrarias y Forestale
    corecore