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Simitha Singh-Rambiritch1, Juan Ugalde3, Parambir S. Dulai4, Daniel E. Almonacid1 and
Ranjan Sinha1*

1 Digbi Health, Mountain View, CA, United States, 2 Health Informatics, University of San Francisco, San Francisco, CA,
United States, 3 Universidad del Desarrollo, Facultad de Ingeniería, Centro de Investigación en Tecnologías para la Sociedad
(C+), Santiago, Chile, 4 Division of Gastroenterology, University of California, San Diego, San Diego, CA, United States

Diet and lifestyle-related illnesses including functional gastrointestinal disorders (FGIDs)
and obesity are rapidly emerging health issues worldwide. Research has focused
on addressing FGIDs via in-person cognitive-behavioral therapies, diet modulation
and pharmaceutical intervention. Yet, there is paucity of research reporting on digital
therapeutics care delivering weight loss and reduction of FGID symptom severity, and on
modeling FGID status and symptom severity reduction including personalized genomic
SNPs and gut microbiome signals. Our aim for this study was to assess how effective
a digital therapeutics intervention personalized on genomic SNPs and gut microbiome
signals was at reducing symptomatology of FGIDs on individuals that successfully lost
body weight. We also aimed at modeling FGID status and FGID symptom severity
reduction using demographics, genomic SNPs, and gut microbiome variables. This
study sought to train a logistic regression model to differentiate the FGID status of
subjects enrolled in a digital therapeutics care program using demographic, genetic,
and baseline microbiome data. We also trained linear regression models to ascertain
changes in FGID symptom severity of subjects at the time of achieving 5% or more
of body weight loss compared to baseline. For this we utilized a cohort of 177 adults
who reached 5% or more weight loss on the Digbi Health personalized digital care
program, who were retrospectively surveyed about changes in symptom severity of their
FGIDs and other comorbidities before and after the program. Gut microbiome taxa and
demographics were the strongest predictors of FGID status. The digital therapeutics
program implemented, reduced the summative severity of symptoms for 89.42%
(93/104) of users who reported FGIDs. Reduction in summative FGID symptom severity
and IBS symptom severity were best modeled by a mixture of genomic and microbiome
predictors, whereas reduction in diarrhea and constipation symptom severity were best
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modeled by microbiome predictors only. This preliminary retrospective study generated
diagnostic models for FGID status as well as therapeutic models for reduction of FGID
symptom severity. Moreover, these therapeutic models generate testable hypotheses
for associations of a number of biomarkers in the prognosis of FGIDs symptomatology.

Keywords: multi-omic models, functional gastrointestinal disorders (FGIDs), IBS – irritable bowel syndrome,
diarrhea, constipation, digital therapeutics, non-pharmacological treatment

INTRODUCTION

Background and Rationale
Diseases of the gastrointestinal tract affect 60–70 million people
in the United States (Everhart, 2008), and the total expenditure in
2015 for these illnesses was 135.9 billion dollars – greater than for
other common diseases and likely to continue increasing (Peery
et al., 2019). GI afflictions and altered bowel habits affect the
quality of life, social functioning and can result in considerable
loss of productivity (Buono et al., 2017; Peery et al., 2019).
Thus, early identification of markers to diagnose functional bowel
disorders and markers to personalize therapeutic approaches may
help reduce healthcare costs and productivity losses and improve
quality of life.

According to the National Center for Health Statistics, 73.6%
of the US population aged 20 and over was overweight or obese in
2017–2018 (Fryar et al., 2020). Overweight and obesity are known
risk factors for the co-occurrence of functional gastrointestinal
disorders (FGIDs), and obesity has been shown to negatively
impact clinical outcomes of FGID treatment (Emerenziani et al.,
2019). Dietary interventions can produce significant weight loss
on overweight and obese subjects (Sinha et al., 2021), and at
the same time can deliver reduction of FGID symptomatology
(Manning and Biesiekierski, 2018).

There is paucity of data looking at demographics, genomic
SNPs and microbiome factors that are associated with
successfully reducing symptomatology of FGIDs by means
of weight loss. Knowledge of these factors could help tailor
interventions for these individuals. Thus, our aim for this study
was to assess how effective a digital therapeutics intervention
personalized on genomic SNPs and gut microbiome signals
were at reducing symptomatology of FGIDs on individuals
that successfully lost 5% or more body weight. Additionally, we
aimed at building statistical diagnostic models to describe the
impact of demographics, genomic SNPs, and gut microbiome
predictors on the likelihood of a subject presenting or not FGIDs,
and then statistical therapeutic models describing reduction of
summative symptom severity [irritable bowel syndrome (IBS),
diarrhea, constipation, bloating, gas, and abdominal pain] as well
as reduction of symptom severity in subjects with IBS, diarrhea,
or constipation, based on the same predictors.

Functional Gastrointestinal Disorders
Functional gastrointestinal disorders are conditions that present
as normal upon examination of the GI system but still
result in poor GI motility – primarily with symptoms in the
middle or lower gastrointestinal tract (American College of
Gastroenterology, 2021). These disorders include irritable bowel

syndrome (IBS), bloating, constipation, diarrhea, gassiness, and
dyspepsia, among others (American College of Gastroenterology,
2021; International Foundation for Gastrointestinal Disorders,
2021). Although the pathophysiology of FGIDs is often
complex due to their multifactorial nature, they are frequently
encountered in both primary care and gastroenterology settings.
FGIDs are thought to encompass combinations of dysregulation
of the gut-brain interaction, altered gut microbiota, altered
mucosal and immune function, gastrointestinal tract motility
disturbance, and visceral hypersensitivity (Black et al., 2020;
Sperber et al., 2021), and women appear to be afflicted at least
twice as frequently as men (Chang, 2004).

Of the six FGIDs studied here, irritable bowel syndrome (IBS)
is the most frequent. It is prevalent in the range of 5–25% of the
population and accounts for 36% of visits to a gastroenterologist
(Chang, 2004; Buono et al., 2017). It is a gastrointestinal tract
disease characterized by abdominal pain, discomfort, altered
bowel habits, and affected quality of life, however, the absence of
demonstrable organic disease makes IBS to not be considered life-
threatening. IBS treatment often requires lifestyle changes and
medication. The most common symptoms of IBS are chronic
diarrhea – IBS-D (1/3 of IBS patients), chronic constipation –
IBS-C, or both - IBS-M. Patients with IBS have a lower reported
quality of life than sufferers of gastroesophageal reflux disease
(GERD) and asthma (Chang, 2004).

Frequent and recurrent pain in the abdominal region not
necessarily attributable to gut function is often referred to as
Functional Abdominal Pain (FAP) (Thompson et al., 1999), the
second FGID analyzed in this manuscript. Children with FAP
were found to be significantly more likely to be obese (Galai
et al., 2020). FAP symptoms are not as common as other FGIDs
and are not necessarily associated with food intake or passage
but rather with psychiatric disorders. Management can involve
psychotherapy and pharmaceutical interventions encompassing
psychiatric regimens like anti-depressants, anticonvulsants, and
treatments for other psychiatric disorders (Clouse et al., 2006).

Functional bloating, the third FGID of focus in this work, on
the other hand, is typically unlinked to psychiatric or organic
causes (Hasler, 2006). Instead, it is a recurrent sensation of
abdominal distention that may or may not be associated with
measurable distention. Bloating is 2× more commonly reported
in women than men and typically worsens after meals, and up
to 96% of IBS patients report bloating (Longstreth et al., 2006;
Sullivan, 2012).

Gassiness, the fourth FGID analyzed in this work, is the
result of gas produced by bacterial fermentation of carbohydrates
and proteins in the large intestine, resulting in changes to
the gut microbiome, increased short-chain fatty acids, and
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increased gas, diarrhea, abdominal pain, and bloating (Hasler,
2006). Although intestinal gas may contribute to bloating,
bloating does not necessarily result from more gas. However,
malabsorption of simple and complex carbohydrates and dietary
fiber are commonly associated with both gas and bloating
(Black et al., 2020). Management of gassiness often involves
dietary modification, gut microbiome modulation, and lifestyle
alteration (Hasler, 2006).

Functional constipation, the fifth FGID studied in our cohort,
is a functional bowel disorder that does not meet IBS criteria,
and presents as incomplete, infrequent or difficult defecation
(Longstreth et al., 2006). Chronic constipation occurs in up
to 11% of the population globally and affects all age groups
(Sperber et al., 2021). Depending on specific tests, constipation
may be defined as (1) straining, hard stools, unproductive
movements, infrequent stools, or incomplete evacuation; (2) less
than three bowel movements per week OR daily stool weight less
than 35 g/day OR straining for more than 25% of the period;
(3) lengthy whole-gut or colonic transit. Surprisingly, stool
frequency appears to have just a slender relationship with colonic
transit and there are usually no demonstrable physiological
abnormalities (Longstreth et al., 2006).

Functional diarrhea (FD), the sixth and final FGID analyzed in
this work, is a functional gastrointestinal disorder characterized
by chronic or recurrent diarrhea not explained by structural
or biochemical abnormalities of the gut. Functional diarrhea is
characterized as the passage of loose or watery stools without
abdominal pain or discomfort (Longstreth et al., 2006). Diarrhea
is one of the most commonly reported symptoms for consulting
a gastroenterologist, affecting up to 4.7% of the global population
(Sperber et al., 2021). It is also a common presenting issue
among many patients in general practice (Longstreth et al., 2006).
Treatment of FD depends on establishing a correct diagnosis
and needs to be distinguished from diarrhea-predominant
irritable bowel syndrome (IBS-D) and other organic causes of
chronic diarrhea. Once a physician has established the diagnosis,
aggravating factors will need to be identified and eliminated,
possibly including physiologic factors (e.g., small bowel bacterial
overgrowth), psychological factors (e.g., stress and anxiety), and
dietary factors (e.g., carbohydrate malabsorption) (Dellon and
Ringel, 2006).

Interestingly, it has been hypothesized that FGIDs and
obesity may be mechanistically linked (Ho and Spiegel, 2008)
and thus that symptom severity for all FGIDs just reviewed
may be reduced by means of weight loss through digital
therapeutics interventions.

Association of Diet and Lifestyle With
Functional Gastrointestinal Disorders
Diet is considered an important trigger of gut-related symptoms.
Poor nutrition, for example, consumption of highly processed
and “fast” foods, has been implicated in FGID etiology (Shau
et al., 2016; Schnabel et al., 2018). Conversely, a Mediterranean
diet has been associated with a lower prevalence of FGIDs
(Agakidis et al., 2019). A dietary therapeutics approach, for
example a low-FODMAP diet in which rapidly fermentable

carbohydrates that are poorly absorbed by the gut are eliminated
or avoided as much as possible, is a typical dietary protocol for
IBS patients (Henström and D’Amato, 2016; Wilder-Smith et al.,
2017). Low-FODMAP diets have been associated with relieving
other FGID symptoms, although functional dyspepsia seems least
responsive to such a regimen (Marsh et al., 2016; Basnayake et al.,
2019).

Dietary fiber, which increases mucosal protein production, is
widely used to treat chronic constipation (Derrien et al., 2010).
This fiber is then digested in the colon, providing a substrate
for microbial fermentation and resulting in byproducts such as
Short Chain Fatty Acids (SCFAs), which have pro-motility effects
and help with stool bulk and gas transit in the colon (Zhao and
Yu, 2016). Moreover, a few reports demonstrate the association
of low fiber diet and alterations in gut microbial communities,
eventually leading to an increase in FGID symptom severity
(Saffouri et al., 2019).

Non-celiac gluten sensitivity also links diet to FGIDs.
Despite lacking serological and histological markers for celiac
disease, a subset of FGID patients report significant alleviation
of symptomatology upon elimination of dietary gluten and
re-experience these symptoms upon reintroducing gluten
(Elli et al., 2016).

Psychosocial factors have been implicated to varying degrees
in FGID etiology, including sleep disturbance, dysfunctional
coping, and psychiatric disorders (Longstreth et al., 2006).
In particular, sleep disturbance has been demonstrated to be
strongly associated with GERD, IBS and functional dyspepsia
(Morito et al., 2014). Rotating shift work and poor sleep
quality have also been identified as risk factors for IBS
(Kim et al., 2013).

A randomized controlled trial by Johannesson et al. (2011)
demonstrated that increased physical activity significantly
reduced symptom severity in adult IBS patients, leading
them to suggest that physical activity should be a primary
treatment modality for IBS. Furthermore, a subset of the
patients that continued increased physical activity 5 years
later, continued to show improvements in IBS symptom
severity, as well as in quality of life, fatigue, depression and
anxiety in the long term (Johannesson et al., 2015). There is
certainly a need for including diet and lifestyle changes in
interventions to treat FGIDs.

Association of Biomarkers With
Functional Gastrointestinal Disorders
Both gut microbiome and human genetics are likely contributors
to FGID etiology (Henström and D’Amato, 2016; Wei et al.,
2021). Evidence indicates a vital genetic component to FGIDs
as demonstrated by prevalence within families and more
substantial concordance between monozygotic versus dizygotic
twins (Lembo et al., 2007; Saito et al., 2010). One evidence
of a mutation in the SCN5A gene that regulates the sodium
channel, linked to IBS, was replicated across two studies, and
although the mutation is found in only approximately 2%
of IBS patients, this finding indicates the influence genetics
may have on IBS symptoms (Saito et al., 2009; Beyder et al.,
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2014). Functional constipation has also been associated with
specific genes (Locke et al., 2006). However, much of the
research around genome-wide association studies and FGIDs
is hampered by small sample sizes (Henström and D’Amato,
2016), have not been independently replicated, or are otherwise
not robust. Yet, the study of the genetics of FGIDs is
rapidly evolving. What seems clear so far is that most IBS
sufferers either share several common gene variants that each
nominally contribute toward the overall risk of the disease,
or, for a subset of sufferers, a few highly penetrant alleles are
likely the significant risk factors. Given that IBS spans both
complex polygenic conditions and rare single-gene forms, it
evidences the need for different strategies to identify these
genetic factors.

The gut microbiome is also extensively implicated in FGID
and particularly IBS pathogenesis (Agnello et al., 2020; Carco
et al., 2020). Both IBS and functional dyspepsia have been shown
to arise in susceptible individuals following a course of acute
onset gastroenteritis (Simrén et al., 2013). Recent studies have
revealed dysbiosis of the gut microbiota in constipated patients
compared with healthy controls, associated with suppressed
intestinal motility by metabolites produced by intestinal bacteria
(Zhao and Yu, 2016; Ohkusa et al., 2019). Other research has
elucidated several mechanisms playing important roles in IBS.
A dysregulated gut-brain axis has been adopted as a suitable
model for IBS, and poor gut microbiome diversity may contribute
to the onset and exacerbation of IBS symptoms. Dietary
fiber appears to influence the gut microbiota, encouraging the
growth of beneficial probiotics while preventing pathogenic and
obesogenic bacteria from overgrowing (Chen et al., 2013; Zhao
and Yu, 2016). Although clinical trials, which have attempted
to characterize the gut microbiota in IBS, do not yet allow
for a causal role to be inferred, they do confirm alterations in
both community stability and diversity (Kennedy, 2014). This
evidence suggests that genomic SNPs and microbiome taxa or
functions may help build statistical diagnostic models of the
likelihood of a subject presenting or not FGIDs, and therapeutic
models describing reduction of FGID symptom severity.

MATERIALS AND METHODS

Subject Enrollment
Subjects were recruited from those who achieved 5% or more
body weight loss when enrolled in the Digbi Health personalized
digital care program (see Intervention below). Only those
subjects who had retrospectively responded to questions about
symptomatology of their FGIDs and other comorbidities at
the start of the program and after successful weight loss were
included in the study (Figure 1). The average number of days
for participants in the program at the time of the survey was
84.26 days. The final cohort studied in this manuscript included
177 subjects with either genome SNP (n = 169) or baseline
gut biome (n = 168) or both analyses performed. Subjects were
divided into two groups for comparisons and models: those who
reported any of 6 FGIDs (IBS, diarrhea, constipation, bloating,
gassiness, and cramping) at baseline or at the time of survey
(n = 104), and those who reported no FGIDs (n = 73).

FIGURE 1 | Study design flowchart.

Intervention
Digbi Health is a next-generation, prescription-grade,
digital therapeutics platform that analyzes genetics, gut
bacteria, lifestyle, and demographics to build evidence-based
individualized dietary and lifestyle plans using artificial
intelligence (AI). It aims to help subjects reduce at least
5% of their baseline body weight and reduce weight-related
inflammatory gut, musculoskeletal, cardiovascular, mental, and
insulin-related comorbidities.

Upon enrollment, program participants were provided with
online login access to the Digbi Health app and were asked to
complete a health questionnaire. A bluetooth compatible digital
weighing scale and buccal swab and stool sampling kits were
shipped to all participants. The app was used to track subjects’
weight, assess dietary intake (via uploaded photographs of food
items consumed), and track wellness and lifestyle associated
metrics such as sleep quality and quantity, exercise type and
duration, stress and meditation, energy levels, cravings, and
recommended foods consumed/avoided. Dietary intake was
assessed by coaches who assigned a nutrient density score to
meals based on their inflammatory, fiber diversity and expected
insulin response.
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Based on analysis of genetic and gut microbiome profiles,
as well as lifestyle vitals, a Digbi Health Wellness Report
was generated for subjects. The results were evaluated with
the participants one-on-one by a health coach over the
course of 4 months at pre-determined weekly and bi-
weekly intervals. To achieve its goal, the program sought to
nudge participants toward making incremental lifestyle changes
focused on reducing sugar consumption and timing meals to
optimize insulin sensitivity, reducing systemic inflammation
by identifying possibly inflammatory and anti-inflammatory
nutrients, and increasing fiber diversity to improve gut health.
Most importantly, these behavioral changes were implemented
with the help of virtual health coaching and the app to ensure
that these changes are habit forming, i.e., long-term sustainable.

Sample Collection and Processing:
Genome SNP Array and Gut Microbiome
Profiling
Subjects self-collected buccal swab samples (Mawi Technologies
iSwab DNA collection kit, Model no. iSWAB-DNA-1200) and
fecal swab samples (Mawi Technologies iSWAB Microbiome
collection kit, Model no. ISWAB-MBF-1200). Sample collection
was completed by following standardized directions provided
to all subjects in an instruction manual. DNA extraction,
purification, and genotyping from buccal swab samples was
performed using Affymetrix’s Direct to Consumer Array version
2.0 (“DTC”) on the Affymetrix GeneTitan platform at Akesogen
Laboratories in Atlanta, GA, United States. Sample processing
of baseline (pre-intervention) fecal samples was followed
by 16S rRNA gene amplicon sequencing also performed at
Akesogen Laboratories in Atlanta, GA, United States. DNA
extraction was performed using Qiagen MagAttract Power
Microbiome DNA Kit on an automated liquid handling
DNA extraction instrument. The V3–V4 region of the 16S
rRNA gene was amplified and sequenced on the Illumina
MiSeq platform using 2 × 300 bp paired-end sequencing
(Illumina, 2013). Sequence reads were demultiplexed,
and Amplicon Sequence Variants (ASVs) generated using
DADA2 in QIIME2 (version 2020.8) (Bolyen et al., 2019).
We trimmed primers off the reads and low-quality bases
(Q < 30). Taxonomic annotation was performed using the
Naive Bayes classifier against the 99% non-redundant Silva
database (Silva 138 Reference database, 2021). We excluded hits
to Mitochondria, Chloroplast, Eukaryota, and unassigned taxa at
the phylum level.

Statistical Analysis
Survey data from 177 respondents (with either genome SNP
or gut biome data) over the course of their successful weight
loss journey in the Digbi Health personalized digital care
program were analyzed retrospectively. Variables for models
included demographic (gender, age, weight, and BMI during gut
microbiome sample collection and weight loss achieved during
the program), genomic SNPs, and baseline gut microbiome data.
We used the Wilcoxon sum rank/signed-rank test or Kendall
correlation test, as appropriate, to assess: (a) the change in

the severity of either of the FGID symptoms and a summative
severity change and (b) the effect of variables on the change
in severity. Significance results were adjusted for multiple
comparisons using the false discovery rate (FDR) correction
method for the microbiome data.

Genome SNP Related Statistics
The 16 SNP predictors, associated with lactose intolerance, gluten
sensitivity, milk and peanut allergies, caffeine metabolism, and
inflammatory markers (TNF and IL10), were from Digbi Health
curated panels used for personalized interventions for subjects
(Supplementary Table 1). Each SNP value was encoded as the
number of risk alleles (0, 1, or 2) for each subject.

Microbiome Related Statistics
Bacterial genera abundances were analyzed for 168 survey
respondents with baseline gut microbiome data available, using
Qiime2 (Bolyen et al., 2019), qiime2R (Jordan E Bisanz, 2018),
and phyloseq (McMurdie and Holmes, 2013). The following
microbial features were filtered out from downstream analysis:
(a) ASVs not classified at the phylum level, (b) phyla that had
<25 ASVs (Elusimicrobiota, Nanoarchaeota, Bdellovibrionota,
WPS-2), (c) uncultured and Incertae Sedis taxa, (d) genera that
had <30 reads in at least 15% of samples, and (e) genera for
which >25% of samples had zero read count. In total, 105
genera were kept in downstream analysis. The abundance of
these bacterial genera was transformed to centered log-ratio
(CLR) using the zCompositions package (Palarea-Albaladejo and
Martín-Fernández, 2015) after first replacing zeros with pseudo
counts based on a Bayesian-multiplicative replacement from the
zCompositions package (Fernandes et al., 2014). Permutational
multivariate analysis of variance (PERMANOVA) was performed
on the gut microbiome Aitchison distance matrix, using gender,
BMI (closest to date of gut biome sampling), and FGID status as
variables using the CLR transformed abundances. Additionally,
the read counts after zero replacement were transformed using
additive log-ratio (ALR) to be utilized in downstream model
statistics (see below) (Friedman et al., 2010; Gloor et al., 2017;
Quinn et al., 2019).

Model Statistics
Linear and logistic regression models were built, and
visualizations generated using the R stats, ggplot2, pscl, car,
pROC, Metrics, caret, glmnet, tidyverse, lubridate, imputeTS,
and ggpubr packages. In order to utilize lasso regression for
variable selection before fitting linear and logistic models, SNPs
with >10% missing values were removed, then remaining
missing SNPs were imputed to their most frequent value (mode).
This resulted in the removal of rs4713586 gluten sensitivity
SNP from both reduction in summative symptom severity and
reduction in constipation symptom severity models. In order
to avoid poor performance in regression models, variables with
Pearson correlation to another variable of ≥80% were removed.
This excluded two SNPs from all regression models that
incorporated DNA: rs182549 of the lactose persistence haplotype
was removed while the more highly cited correlated (Pearson
correlation, r = 0.99) haplotype SNP, rs4988235, was retained.
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Additionally, IL10 SNP rs3024496 was removed as being highly
correlated (Pearson correlation, r = −0.95) with rs1800896,
another IL10 SNP, which was preferentially retained as having a
higher risk in the population (SNPedia database, 2021).

For regression models, we transformed bacterial abundance
data using the additive log-ratio (ALR) (Friedman et al.,
2010; Gloor et al., 2017), which maintains sub-compositional
coherence, permitting genera to be removed in downstream
analysis (for example, removing insignificant predictors from a
regression model). For this, the easy Coda package (Greenacre,
2018) was employed to analyze all 105 microbial genera utilizing
variances, variances explained, and Procrustes correlations to
select candidate references for ALR according to methodology
of Greenacre et al. (2021). An additional criterion we employed
was prevalence, as zero values are problematic with log-ratios.
Based on these criteria, Blautia was the selected reference. In
all cases of highly correlated microbe pairs, the unclassified
microbe was removed, or if both were unclassified, then
the microbe with the larger mean absolute correlation in
that dataset was removed. This resulted in removing up to
5 microbes (of 105) from regression models incorporating
microbial predictors. Gender and SNPs were scaled to a
range between −1 and 1. Age and gender were the two
demographic variables used in all models; age was used in
models with no transformation. Our hypothesis was that age
and gender would be associated with bacterial taxa as evident
from literature and are important factors considered in our
personalization and care interventions. Hence, we decided to
include gender and age as well in all the models and test their
association in the context of the moderation effect of genetic and
microbiome variables.

After the above data preparation, lasso was employed (glmnet
package), for variable selection in the modeling of datasets
that included the 105 microbial predictors. Optimal lambda
was chosen by a fivefold cross-validation grid search, setting
standardize = TRUE so that variables would compete fairly in
regularization. The lambda resulting in the minimum mean
cross-validated error was selected, or if this resulted in a
paucity of predictors, then a plateau lambda in error vs. lambda
plot having a sufficient number of predictors was selected.
Mean squared error was employed in linear lasso regression,
while the mean absolute error was used in logistic regression
models. Predictors with non-zero coefficients were retained for
subsequent best-fit regression to describe the FGID differences of
the subjects over the course of treatment.

To arrive at these descriptive models the step function (stats
package) was employed, using the Akaike information criterion
(AIC) to obtain a high-quality fit. If any insignificant variables
remained, these were removed one-by-one beginning with
the least significant, until only significant variables remained,
resulting in a final interpretable model for each investigation and
set of predictors.

The descriptive modeling of FGID vs. non-FGID was
conducted by fitting a logistic regression model, as described
above, to demographic and 14 SNPs genomic data (D + G
model), producing coefficients to describe the impact of each
predictor on FGID in this cohort. A second logistic model

was fit with demographic plus 105 baseline gut microbiome
genera remaining after pre-processing (D + M model). A third
logistic model similarly employed lasso for variable selection
from demographic variables, 14 genomic SNPs, and 104 baseline
genera (D+ G+M model).

For those respondents who self-reported any of the 6 FGIDs,
change in symptom severity was analyzed with respect to
their demographic, genome SNPs, and baseline gut microbiome
data. 104 survey respondents rated the severity of their FGID
symptoms on a scale of 1–5. A linear regression model was
fit to describe the change in summative symptom severity as a
function of demographic and genomic variables (D + G model).
As above, this model was compared with two additional models:
demographic plus microbial predictors (D + M model) and
demographic, genomic, plus microbial predictors (D + G + M
model). Lasso regression was employed as above for variable
selection, followed by the use of the step function. Additionally,
changes in IBS, diarrhea and constipation symptom severity were
modeled for those subsets of participants who reported them,
using lasso with threefold cross-validation and linear regression
as above with D+ G, D+M, and D+ G+M predictors.

Ethics Statement
E&I Review Services, an independent institutional review board,
reviewed and approved IRB Study #18053 on 05/22/2018.
Additionally, IRB Study #21141 was determined to be exempt
from E&I Review Services on 08/06/2021. Research material
derived from human participants included self-collected buccal
and fecal swabs. Informed consent was obtained electronically
from study participants.

RESULTS

Subject Characteristics
In total, 177 subjects who were successful at losing 5% or more
body weight and had genetic and/or gut biome data while
enrolled in the Digbi Health program were surveyed to assess
any changes in the symptomatology of their FGIDs (Figure 1).
We compared baseline characteristics of those who reported
FGIDs vs. those who did not. The distributions of gender, age,
and BMI are seen in Table 1. In this dataset, a significant
difference was found in gender (X2

1 = 8.39, P = 0.004) and
initial BMI (Wilcoxon sum rank test, P = 0.009), between
those who reported FGID and those who did not, but no
significant difference was found in age (Wilcoxon sum rank
test, P = 0.60), number of individuals consuming alcohol or
using recreational drugs such as cannabinoids and nicotinoids
(including tobacco smoking) (X2

1 = 2.52, P = 0.112 and
X2

1 = 0.28, P = 0.595, respectively). Subsequently, we investigated
the effect of gender, BMI, and FGID status on the beta diversity
of the baseline gut microbiome of subjects. The PERMANOVA
analysis (Supplementary Table 2) shows that gender had a
significant effect on the beta diversity (R2 = 0.012, P = 0.030),
whereas BMI (R2 = 0.007, P = 0.279) and FGID status (R2 = 0.005,
P = 0.532) did not.
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TABLE 1 | Distribution and demographics of FGID and non-FGID
groups in the study.

Descriptor variable FGID group
(n = 104)

Non-FGID group
(n = 73)

P-value

Gender, n (%)

Male 12 (11.54%) 22 (30.14%) 0.004a

Female 92 (88.46%) 51 (69.86%)

Age, in years [median (SD)] 49 (11.92) 51 (12.25) 0.60

BMI closest to gut biome
sampling [median (SD)]

31.17 (7.37) 33.51 (7.50) 0.009

Alcohol consumption, n (%) 62 (59.61%) 52 (71.23%) 0.112

Recreational drugs (including
tobacco smoking), n (%)

19 (19.2%) 16 (22.5%) 0.595

aValues in italics are significant (P = < 0.05).

TABLE 2 | Functional gastrointestinal disorders (FGID) vs. non-FGID logistic
model: demographics + genomics (D + G).

Variable OR 2.5% CI 97.5% CI

Gender 3.255 1.421 7.856

Caffeine metabolism (rs2472297), Risk Allele C 0.447 0.211 0.888

Gluten sensitivity (rs2187668), Risk Allele T 2.926 1.140 8.269

Peanut allergy (rs9275596), Risk Allele C 0.556 0.323 0.935

McFadden pseudo R2: 0.089, OR, odds ratio.

Gut Microbiome Taxa Are a Stronger
Predictor of Functional Gastrointestinal
Disorders Status Than the Genomic
SNPs Analyzed in This Study
The SNP values were not significantly different (Welch’s two-
sample t-tests, results not shown) between respondents with
FGID and those without. Logistic regression modeled the
associations of demographic, genome SNP, and baseline gut
microbiome variables with FGID status in this cohort (Tables 2–
4), fitting separate average effect size for each predictor while
controlling for all other model variables. The D + G model
described females in this cohort as 3.26 times more likely than
males to suffer FGID while controlling for the genomic predictors
in the model (Table 2), and each risk allele of the rs2187668 gene
was associated with a 2.93 times greater likelihood of being an
FGID sufferer. Similarly, risk alleles for rs2472297 and rs9275596
were associated with a lowered likelihood of FGID – conferring
0.45 and 0.56 times likelihood of being an FGID sufferer.

In a second logistic model, we studied the associations
of D + M together on the likelihood of a subject having
an FGID (Table 3). The nine taxa identified by lasso
regression were used as predictors for a logistic regression
model to describe the classification of 168 subjects into their
corresponding FGID status, using the genus Blautia as the
reference denominator for ALR. In this model, the effect of
the female gender while controlling for microbial predictors
was an average 2.33 times likelihood of FGID compared
with the male gender. Genera Ruminococcus torques group,
Akkermansia, unclassified genus CAG-56 of Lachnospiraceae
family, Haemophilus, and Terrisporobacter were all associated

TABLE 3 | Functional gastrointestinal disorders vs. non-FGID logistic model:
demographics + microbiome (D + M).

Variable OR 2.5% CI 97.5% CI

Gender 2.334 1.213 4.686

Ruminococcus torques group 1.193 1.039 1.391

Akkermansia 1.076 1.011 1.151

Holdemanella 0.932 0.878 0.986

Unclassified genus CAG-56 of Lachnospiraceae family 1.095 1.024 1.175

Unclassified genus UCG-010 of Oscillospirales order 0.904 0.839 0.970

Anaerostipes 0.806 0.680 0.938

Haemophilus 1.115 1.034 1.210

Fusicatenibacter 0.894 0.803 0.985

Terrisporobacter 1.076 1.008 1.153

McFadden pseudo R2: 0.220, OR, odds ratio.

TABLE 4 | Functional gastrointestinal disorders vs. non-FGID logistic model:
demographics + genomics + microbiome (D + G + M).

Variable OR 2.5% CI 97.5% CI

Gender 2.256 1.151 4.638

Ruminococcus torques group 1.186 1.030 1.388

Akkermansia 1.080 1.013 1.156

Holdemanella 0.928 0.871 0.985

Unclassified genus CAG-56 of Lachnospiraceae family 1.100 1.028 1.184

Unclassified genus UCG-010 of Oscillospirales order 0.912 0.845 0.978

Anaerostipes 0.797 0.671 0.929

Haemophilus 1.098 1.017 1.193

Fusicatenibacter 0.892 0.801 0.983

Terrisporobacter 1.074 1.003 1.153

McFadden pseudo R2: 0.227, OR, odds ratio.

with increased FGID. Whereas Holdemanella, unclassified
genus UCG-010 of Oscillospirales order, Anaerostipes, and
Fusicatenibacter were all associated with decreased (protective of)
FGID status.

In a third logistic model studying the associations of
D + G + M variables together on the likelihood of a subject
having FGID status (Table 4), no SNPs had a significant
association with FGID risk. Variables in Tables 3, 4 are identical,
with just slight variations in odd ratios. Not surprisingly, pseudo
R2 values from the D + M model (0.220) and the D + G + M
model (0.227) were very similar, but most importantly, improved
from that of the D+ G model (0.089).

Subjects Reported a Reduction in
Severity of Functional Gastrointestinal
Disorders Related Symptoms Over the
Course of Treatment
The proportion of subjects who experienced at least one point
improvement in symptom severity ranged from 75.32% (77/104)
for constipation to 90.63% (96/104) for bloating (Figure 2).
Improvement in summative severity across the 6 FGIDs was
seen by 89.42% of respondents (93/104), with an average
summative reduction of 51.17% (Wilcoxon signed-rank test,
P = <0.001). The improvement in FGID symptomatology over
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FIGURE 2 | Self-reported symptom severity change (number of levels increased/decreased severity) in functional gastrointestinal disorders from baseline to time of
survey. Percentages displayed in red indicate the proportion of users who reported at least one point reduction is symptom severity.

the course of the digital therapeutics intervention (percent
summative reduction) was not correlated with percent weight
loss (Kendall = 0.12, P = 0.91), age (Kendall = −0.66, P = 0.51),
or gender (Wilcoxon sum rank, P = 0.809). Individually,
we noted an average 45.93% reduction in the severity of
IBS (Wilcoxon signed-rank, P = <0.001), 61.01% average
reduction in the severity of bloating (Wilcoxon signed-rank
test, P = <0.001), 38.55% average reduction in the severity of
gassiness (Wilcoxon signed-rank, P =< 0.001), 61.69% average
reduction in the severity of cramping/belly pain (Wilcoxon
signed-rank, P = <0.001), 37.54% average reduction in the
severity of constipation (Wilcoxon signed-rank, P = <0.001) and
a 48.97% average reduction in the severity of diarrhea (Wilcoxon
signed-rank, P = <0.001).

Genomic and Microbiome Predictors
Can Model Reduction in Summative
Functional Gastrointestinal Disorders
Symptom Severity as a Result of the
Digital Therapeutics Intervention
Supplementary Tables 3, 4 and Table 5 present linear
D + G, D + M, and D + G + M models of reduction in
summative FGID symptom severity, respectively. In the D + G
model (Supplementary Table 3), each additional risk allele
for SNPs rs4639334 and rs7775228 was associated with an
increase in self-reported summative FGID symptom severity.
In the linear D + M model (Supplementary Table 4), gut
microbial genera Candidatus Soleaferrea, Eubacterium hallii
group, Alistipes, and Desulfovibrio were all associated with an
increase in self-reported summative FGID symptom severity.
Microbial genera Ruminococcus torques group, Intestinimonas,
unclassified genus GCA-900066575 of Lachnospiraceae family,

and Megasphaera were all associated with a self-reported
reduction in summative FBD symptom severity. In the linear
D + G + M model (Table 5), risk alleles of the same
two SNPs identified (Supplementary Table 3) were again
associated with an increase in self-reported summative FGID
symptom severity. Similarly, gut microbial genera Desulfovibrio,
Candidatus Soleaferrea, and Eubacterium ventriosum group
were associated with self-reported increase in summative FGID
symptom severity. Microbial genera Megasphaera, unclassified
genus CAG-352 of Ruminococcaceae family, Ruminococcus
torques group, Streptococcus, and Intestinimonas were all
associated with self-reported reduction in summative FGID
symptom severity. Adjusted R2 values were 0.124 for the D + G
model, 0.318 for the D+M model, and 0.442 for the D+ G+M
model. This indicates that the fit of the models improved when
adding microbiome predictors, with the best fit model for a
reduction in summative FGID symptom severity containing a
mixture of genomic SNP and microbiome variables.

In the Descriptive Models, Reduction in
Irritable Bowel Syndrome Symptom
Severity Was Better Explained by a
Mixture of Genomic and Microbiome
Predictors, Whereas Reduction in
Diarrhea and Constipation Symptom
Severity Was Better Explained by
Microbiome Predictors Only
Tables 6–8 present linear D + G + M models for reduction
of symptom severity for IBS, constipation, and diarrhea,
respectively. Supplementary Tables 5, 7, and 9, present linear
D + G models, and Supplementary Tables 6, 8, and 10, present
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TABLE 5 | Reduction in summative FGID symptom severity linear model:
demographics + genomics + microbiome (D + G + M).

Variable Estimate Std. error t-value P-value

Megasphaera 0.495 0.136 3.631 <0.001a

Desulfovibrio −0.517 0.105 −4.910 <0.001

Unclassified genus CAG-352 of
Ruminococcaceae family

0.257 0.104 2.477 0.015

Gluten Sensitivity (rs4639334),
Risk Allele A

−2.013 0.792 −2.541 0.013

Ruminococcus torques group 0.646 0.246 2.626 0.010

Gluten Sensitivity (rs7775228),
Risk Allele C

−1.936 0.828 −2.338 0.022

Streptococcus 0.505 0.218 2.322 0.023

Intestinimonas 0.319 0.116 2.756 0.007

Candidatus Soleaferrea −0.461 0.150 −3.076 0.003

Eubacterium ventriosum group −0.290 0.134 −2.157 0.034

Adjusted R2: 0.442.
aValues in italics are significant (P = <0.05).

TABLE 6 | Reduction in IBS symptom severity linear model:
demographics + genomics + microbiome (D + G + M).

Variable Estimate Std. error t-valueP-value

Gluten sensitivity (rs7775228), Risk Allele C −0.566 0.225 −2.515 0.016a

Unclassified genus Clostridia UCG-014 0.092 0.024 3.844 <0.001

Escherichia-Shigella 0.087 0.028 3.122 0.003

Fusicatenibacter −0.096 0.038 −2.501 0.016

Megasphaera 0.101 0.034 3.007 0.004

Moryella −0.079 0.028 −2.775 0.008

Adjusted R2: 0.487.
aValues in italics are significant (P = <0.05).

TABLE 7 | Reduction in constipation symptom severity linear model:
demographics + genomics + microbiome (D + G + M).

Variable Estimate Std. error t-value P-value

Parabacteroides 0.231 0.073 3.174 0.003a

Eubacterium coprostanoligenes group −0.161 0.051 −3.125 0.003

Lachnospira 0.123 0.047 2.606 0.013

Gluten sensitivity (rs7775228), Risk Allele C 0.757 0.327 2.311 0.026

Adjusted R2: 0.389.
aValues in italics are significant (P = <0.05).

linear D +M models for reduction of symptom severity for IBS,
constipation, and diarrhea, respectively. Adjusted R2 values for
the reduction in IBS symptom severity models were 0.130 for
the D + G model, 0.432 for the D + M model, and 0.487 for
the D + G + M model. Adjusted R2 values for the reduction in
constipation symptom severity models were 0.038 for the D + G
model, 0.413 for the D+M model, and 0.389 for the D+ G+M
model. Adjusted R2 values for the reduction in diarrhea symptom
severity models were 0.090 for the D + G model, 0.610 for
the D + M model and 0.528 for the D + G + M model.
This shows that genomic SNP models based on the variables
selected for this study performed relatively poorly and that the
inclusion of microbiome variables constantly improved the fit

TABLE 8 | Reduction in diarrhea symptom severity linear model:
demographics + genomics + microbiome (D + G + M).

Variable Estimate Std. error z-value P-value

Ruminococcus torques group 0.203 0.076 2.669 0.013a

Lactobacillus 0.114 0.042 2.706 0.012

Unclassified genus UCG-009 of
Butyricicoccaceae family

−0.107 0.035 −3.045 0.005

Prevotella 0.069 0.031 2.249 0.034

Adjusted R2: 0.528.
aValues in italics are significant (P = <0.05).

of the models. Interestingly, the D + G + M was the best fit
model for IBS symptom reduction, whereas, for constipation
and diarrhea symptom reduction, the D + M models were the
best fit.

Looking at the best fit models, Unclassified genus Clostridia
UCG-014, Escherichia-Shigella, and Megasphaera were associated
with reduction of IBS symptom severity, whereas risk alleles
of rs7775228 (gluten sensitivity) and genera Fusicantenibacter
and Moryella were associated with an increase. For constipation,
there were only microbial taxa in the D + M model:
Parabacteroides, Unclassified genus of Anaerovoracaceae Family
XIII AD3011 group, Lachnospira and Terrisporobacter were
associated with a reduction in symptom severity, whereas
Eubacterium coprostanoligenes group was associated with an
increase. For diarrhea change in symptom severity, like for
constipation, only microbial taxa were found significant in the
D + M model: genera Intestinimonas, Prevotella, Lactobacillus,
and Phascolarctobacterium were associated with a reduction in
symptom severity, while Unclassified genus UCG-009 of the
Butyricicoccaceae family was associated with an increase.

DISCUSSION

Out of 177 subjects enrolled in this study who successfully
lost 5% or more body weight through a digital therapeutics
program, 104 presented one or more FGIDs. These FGID
sufferers were significantly different from the non-FGID group
in terms of gender and BMI at the time of sampling (Table 1).
Additionally, gender was significantly associated with the
composition of baseline gut microbiome samples in these subjects
(Supplementary Table 2). Logistic regression models trained
to differentiate FGID status confirmed that the female gender
was associated with a higher prevalence of FGID as seen in
the logistic regression D + G model, where females were 3.26
times more likely to be FGID sufferers than males while holding
genomic predictors constant (Table 2). This is in accordance
with what has been reported elsewhere (Narayanan et al., 2021).
Additionally, when baseline microbiome was added to the model
(D + G + M model), females were on average 2.26 times more
likely to suffer from FGID than males while holding constant
both genomic and microbial predictors (Table 4). Thus, some
of the gender association in the D + G model is explained by
microbiome variables in the D + G + M model, reinforcing the
role of gender in shaping the baseline gut microbiome of subjects
(Kim et al., 2020).
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Of note, the SNP: gluten sensitivity (rs2187668, risk allele
T) was seen to be strongly associated with FGID status in our
cohort. This SNP variant is identified as HLA-DQ2.5 and has
been reported as one of the most common HLA-DQ2 haplotypes
associated with celiac disease (Van Heel et al., 2007). Interestingly,
the D + G + M model did not select any genomic variables
and was identical to the D + M model (same variables but
slightly different odd ratios), and not surprisingly, the pseudo
R2 scores for these models are similar (0.227 for D + G + M
vs. 0.220 for D + M). These models have pseudo R2 scores
higher than for the D + G model (0.089), indicating that
baseline microbiome better classified participants having FGID
than models based on genomic predictors and that the addition
of SNPs did not improve classification of FGID by gender plus
baseline microbiome. Many of the microbiome taxa variables
identified in the models have already been reported in the
literature associated with FGIDs. For instance, previous studies
show a strong association of the Ruminococcus torques group with
FGIDs (Lyra et al., 2009).

We then investigated the change in reported symptom
severity over the course of the digital therapeutics program.
In total, 89.42% (93/104) of subjects experienced improvement
in summative symptom severity of their reported FGIDs. This
improvement in symptom severity was not correlated with
percent weight loss, gender, or age. Reduction in symptom
severity was significant for all six FGIDs investigated individually
and for summative symptom severity (all of them together).
When we modeled the reduction in summative FGID symptom
severity over the course of digital therapeutics intervention, we
identified the D + G + M linear model as the best fitting, with
an adjusted R2 of 0.442, compared with 0.124 for the D + G
model and 0.318 for the D + M model. Two genomic SNPs
and eight microbial taxa were the significant predictors in the
best model for these participants. Thus, in our cohort, gender,
and baseline microbiome best classified subjects into their FGID
status, whereas a combination of genomic SNPs and microbiome
variables (but not gender) best-modeled reduction in summative
FGIDs symptom severity.

We then looked at the reduction of symptom severity for three
functional bowel disorders of our interest: IBS, constipation, and
diarrhea. Interestingly, for IBS, the best fit model was the one
containing D + G + M variables, whereas, for constipation
and diarrhea, the best fit models were those only containing
D+M variables.

When analyzing the variables found significant to the best fit
models for this cohort, we identified several genomic SNPs and
microbial taxa that are shared across two or more models. SNP
rs7775228 (gluten sensitivity; risk allele C) was associated in the
linear D+G+M model with an increase in summative symptom
severity (Table 5), as well as in the linear D + G + M model
with an increase in IBS symptom severity (Table 6). Interestingly,
despite not being the best fit model, it also was associated in
the linear D + G model with an increase in diarrhea symptom
severity (Supplementary Table 9) and associated in the linear
D + G + M model with reduction of constipation symptom
severity (Table 7). In addition to its association with gluten
sensitivity (Monsuur et al., 2008), which is why we included

this SNP as part of our care protocols, rs7775228 is involved
in seasonal allergic rhinitis and as a protein biomarker for
inflammation (Monsuur et al., 2008; Enroth et al., 2014).

In terms of the microbial taxa shared across two or more
models, genus Fusicatenibacter was associated with decreased
likelihood of having FGID status in the D + G + M logistic
model of this cohort (Table 4) and associated with an increase
in IBS symptom severity in the D + G + M linear model
(Table 6). Genus Intestinimonas was associated with a reduction
in summative FGID symptom severity in the D + G + M
model (Table 5) and a reduction in diarrhea symptom severity
in the D + M model (Supplementary Table 10). Genus
Megasphaera was noted to be strongly associated with a reduction
in summative FGID symptom severity in the D + G + M linear
model of Table 5 and a reduction in IBS symptom severity in
the D + G + M linear model of Table 6. Interestingly, genus
Lactobacillus appears associated with a reduction in diarrhea
symptom severity in the linear D + M model (Supplementary
Table 10), an effect that has been amply demonstrated in
the literature (McFarland and Goh, 2019), supporting the
validity of our methods. Moreover, these bacteria, specifically,
Fusicatenibacter, Intestinimonas, and Megasphaera have been
previously reported to be Short Chain Fatty Acids (SCFAs)
producers (Takeshita et al., 2016; Jin et al., 2019; Bui et al.,
2020; Luu et al., 2021). There is ample evidence of the role of
SCFAs in improving gut integrity, which plays an essential role
in maintaining mucosal homeostasis (Tan et al., 2014), and may
explain why these taxa were either negatively associated with
FGID status or were associated with a reduction in the severity
of FGID symptoms in our cohort.

Our analysis also revealed some bacterial taxa that were
associated with FGID status. Desulfovibrio was observed to
possess a significant association with an increase in FGID
summative symptom severity (Table 5). Previous reports suggest
that bacteria belonging to the genus Desulfovibrio generate H2S
gas via a dissimilatory sulfate reduction pathway, leading to
inflammatory gut disorders (Singh and Lin, 2015; Kushkevych
et al., 2019). We also noted the association of Akkermansia with
increased FGID likelihood (Table 4). Although this bacterium is
suggested to have beneficial associations with gut health, a few
studies have reported its inverse correlation with reduction of
abdominal pain (Cruz-Aguliar et al., 2019).

Ruminococcus torques group appears associated with FGID
status in the D+ G+M logistic model of Table 4 and associated
with a reduction in summative FGID symptom severity in the
D + G + M model of Table 5. Despite not being the best fit
model, this taxon also was associated with a reduction of diarrhea
symptom severity in the linear D + G + M model of Table 8.
Different Ruminococcus torques subgroups have been associated
in the literature with IBS-D, IBS-M, and Crohn’s disease
subjects (Lyra et al., 2009). Additionally, genus Terrisporobacter,
associated with inflammation and gut dysbiosis (Lee et al., 2020),
was associated with FGID status in the D + G + M logistic
model (Table 4). Collectively, these findings demonstrate the
potential of gut microbial profiling not only for predicting
current gastrointestinal health but also prognosis in FGID related
symptoms as a response to personalized dietary intervention.
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Limitations
This study has some limitations that are important to note.
First, the descriptive modeling exercise performed in this
work is the best fit for the cohort analyzed here and is not
intended to infer for the larger population. In particular, we
aimed to investigate which demographic, genomic, and baseline
microbiome predictors improved the fit of the models, along with
the magnitude and direction of their association with FGID status
or symptom prognosis. Second, whereas we used all microbiome
taxa present in the baseline gut microbiome samples (n = 105
after the filters imposed), for genomic SNPs, we selected only
markers that are used to inform diet and lifestyle interventions
of subjects under the Digbi Health program, specifically those
associated with intolerances and allergies. So, the fact that
microbiome markers almost always outperformed genomic SNP
markers may be due to the markedly different dataset sizes.
Third, inclusion criteria in this study did not consider factors
known to influence the microbiome composition (probiotic
or antibiotic usage) or other comorbidities (musculoskeletal
pain, skin conditions, hypothyroidism, diabetes, cholesterol,
hypertension, and mental health) that may confound the results
presented. Fourth, the survey instrument utilized was an ad hoc
questionnaire that asked participants to rate their symptom
severity for different FGIDs on a scale of 1–5 and was not
a validated clinical instrument. The survey was performed
retrospectively for both time points after subjects successfully
achieved 5% or more body weight loss. And fifth, the findings
from this study are derived from a weight loss cohort and thus
may be only reflective of the population with FGID that is
overweight or obese, or that may benefit from weight loss.

CONCLUSION

Despite the above limitations, the digital therapeutics care
provided to subjects, informed by genetic and baseline gut
microbiome and their interaction with participant’s lifestyle,
effectively reduced symptom severity of FGIDs, including IBS,
diarrhea, and constipation. One of our earlier studies supported
the use of this care as a therapy for insulin resistance (Ricchetti
et al., 2020), empowering subjects to manage their inflammation
by awareness of the impact of processed foods and foods
to which they are sensitive as per their genomic SNPs and
gut microbiome results. Dietary fiber coaching also resulted
in increased vegetable diversity and quantity. Whereas further
research is required to better understand the effect of different
components of the care (e.g., fiber types) on modulating the
microbial taxa and genomic SNPs identified in the models and
their corresponding effect on reduction of FGIDs symptom
severity, this preliminary retrospective study generates testable
hypotheses for associations of several biomarkers with FGID
status and with the prognosis of FGID symptomatology. This
study thus provides proof of concept on how a combined
genetic and gut microbiome-based dietary intervention can
yield biomarkers from human studies. Moreover, the methods
presented add to the existing set of tools (e.g., Polster
et al., 2021) that can be readily implemented to understand

the role that genetics and gut microbiome play on disease
etiology. Additionally, FGID and overweight or obesity are
common comorbidities, yet concomitant reduction of body
weight and reduction of FGID symptom severity is an endpoint
which has been poorly studied but it is of high interest to
clinicians and patients.
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