406 research outputs found

    Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spöl)

    Get PDF
    We investigated the effects of an experimental flood regime on periphyton and stream metabolism downstream of a large reservoir. Three floods took place in summer of 2000 and 2001 and two floods in summer of 2002. Residual flow in the River Spöl was <2.5 m3s-1. The experimental floods lasted 9 to 11 hours with peak flows ranging from 12 to 55 m3s-1. Periphyton was collected in the River Spöl (impact site) and in a reference stream in 1999 (pre-flood) and before and after each flood from 2000 to 2002. We measured ecosystem metabolism with the single station diel oxygen method a few days before and after floods in the River Spöl. Floods temporarily reduced periphyton biomass, but the disturbance impact and recovery patterns were not uniform among floods, thus resulting in high inter-annual variation in seasonal biomass patterns. The average periphyton biomass in the River Spöl even increased after a transient reduction in 2000. A principal component analysis indicated a persistent shift in the structure of the diatom community at the impact site. The floods reduced gross primary production and to minor extent ecosystem respiration, resulting in a transient decline in the P/R ratio. However, ecosystem metabolism recovered relatively fast. The new flow regime increased ecosystem dynamics, but it may take several years until the autotrophic energy base becomes adapted to the new and more dynamic flow regim

    Daily entropy of dissolved oxygen reveals different energetic regimes and drivers among high‐mountain stream types

    Get PDF
    High‐resolution time series of dissolved oxygen (DO) have revealed different ecosystem energetics regimes across various stream types. Ecosystem energetic regimes are relevant to better understand the transformation and retention of nutrients and carbon in stream ecosystems. However, the patterns and controls of stream energetics in high‐mountain landscapes remain largely unknown. Here we monitored percent DO saturation (every 10 min) over 2 years in a glacier‐fed, krenal (groundwater‐fed) and a nival (snowmelt‐fed) stream as they are typical for the high mountains. We used daily Shannon entropy to explore the temporal dynamics of stream water DO and to infer information on the ecosystem energetics and on the potential drivers. We found that discharge modulated the drivers of DO variations at daily and seasonal scales. Elevated bed movement along with high turbidity and very high gas exchange rates drove the daily DO patterns in the glacier‐fed stream during snow and ice melt, whereas light seemed to drive DO dynamics in the krenal and nival streams. We found a window of favorable conditions for potential gross primary production (GPP) during the onset of the snowmelt in the glacier‐fed stream, whereas potential GPP seemed to extend over longer periods in the krenal and nival streams. Our findings suggest how the energetic regimes of these high‐mountain streams may change in the future as their biological and physical drivers change owing to climate warming

    The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate

    Get PDF
    The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flow

    Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice

    Get PDF
    We perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas trapped in an optical lattice. The entropy of the system is determined by comparing accurate measurements of the equilibrium double occupancy with theoretical calculations over a wide range of parameters. We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to obtain quantitative agreement with the experimental data. The reliability of the entropy determination is confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud we obtain an entropy per atom as low as 0.77k(B) which is about twice as large as the entropy at the Neel transition. The corresponding temperature depends on the atom number and for small fillings reaches values on the order of the tunneling energy

    Haemodialysis activates phospholipase A2 enzyme

    Get PDF
    Background Clinical and experimental evidence suggest that haemodialysis (HD) procedure is an inflammatory process. For the production of proinflammatory lipid mediators in many inflammatory reactions, the release of arachidonic acid by phospholipase A2 (PLA2 enzyme is a prerequisite. Therefore, the purpose of the present investigation was to establish whether the activity of PLA2 increases during HD and whether the increase depends on the type of dialyser used. Methods We performed dialysis in eight chronic HD patients. Blood samples entering and leaving the dialyser were obtained before and at 15, 60, 120 and 180 min after the dialysis was started, on one occasion using a cuprophane and on another occasion a cellulose triacetate dialyser. PLA2 activity was assessed in crude plasma and in plasma extract. Results PLA2 activity in plasma extract exhibited similar biochemical properties to that of inflammatory human synovial fluid PLA2 enzyme which is of group II PLA2. PLA2 activity in crude plasma represents a type of PLA2 other than the synovial type. In HD patients, baseline PLA2 activities in crude plasma and plasma extract were significantly increased when compared to normal subjects. An increase in PLA2 activity was observed in crude plasma with a peak appearing at 15 min when the patients were dialysed with cuprophane and cellulose triacetate membranes. This increase was observed in both arterial and venous blood samples and was more pronounced when the patients were dialysed with cuprophane than with cellulose triacetate membranes. When PLA2 was assessed in plasma extract, the activity increased only with cuprophane but not with cellulose triacetate membranes. Conclusions PLA2 activity in plasma is increased in HD patients and increases during the dialysis procedure to a greater extent with a less biocompatible membrane. Continuous activation of PLA2 might be relevant for long-term deleterious consequences of H

    Protocolised early de-resuscitation in septic shock (REDUCE): protocol for a randomised controlled multicentre feasibility trial.

    Get PDF
    BACKGROUND Fluid overload is associated with excess mortality in septic shock. Current approaches to reduce fluid overload include restrictive administration of fluid or active removal of accumulated fluid. However, evidence on active fluid removal is scarce. The aim of this study is to assess the efficacy and feasibility of an early de-resuscitation protocol in patients with septic shock. METHODS All patients admitted to the intensive care unit (ICU) with a septic shock are screened, and eligible patients will be randomised in a 1:1 ratio to intervention or standard of care. INTERVENTION Fluid management will be performed according to the REDUCE protocol, where resuscitation fluid will be restricted to patients showing signs of poor tissue perfusion. After the lactate has peaked, the patient is deemed stable and assessed for active de-resuscitation (signs of fluid overload). The primary objective of this study is the proportion of patients with a negative cumulative fluid balance at day 3 after ICU. Secondary objectives are cumulative fluid balances throughout the ICU stay, number of patients with fluid overload, feasibility and safety outcomes and patient-centred outcomes. The primary outcome will be assessed by a logistic regression model adjusting for the stratification variables (trial site and chronic renal failure) in the intention-to-treat population. ETHICS AND DISSEMINATION The study was approved by the respective ethical committees (No 2020-02197). The results of the REDUCE trial will be published in an international peer-reviewed medical journal regardless of the results. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT04931485

    A comparison of benthic macroinvertebrate assemblages among different types of alpine streams

    Get PDF
    SUMMARY 1. Benthic macroinvertebrate assemblages were compared among a diverse array of firstorder alpine tundra streams of the Swiss Alps. 2. A principal components analysis separated sites into three main groups: rhithral streams, rhithral lake outlets, and kryal sites including outlets and streams. Rhithral streams contained the most diverse and taxon rich assemblages, being colonised by both non-insect taxa and Ephemeroptera, Plecoptera, Trichoptera and Diptera. 3. Rhithral lake outlets supported high densities of non-insect taxa such as Oligochaeta, Nemathelminthes and crustaceans. Despite low taxon richness, kryal sites had high Ephemeroptera and Plecoptera abundances. Chironomidae were most common at all sites. 4. Collector-gatherers were dominant at all sites, whereas filter-feeders were rare. Scrapers and shredders were more common in streams than lake outlets. 5. Water temperature and algal standing crops were higher at rhithral lake outlets than rhithral streams, perhaps providing more favourable habitat for non-insect taxa. Glacial runoff was the dominant factor influencing macroinvertebrate assemblages of kryal streams and kryal lake outlets. Alpine lakes influenced the environmental conditions of their outlets and, consequently, their macroinvertebrate assemblages unless being constrained by a glacial influence

    Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms

    Get PDF
    Flow is an important physical driver of biofilm communities. Here, we tested the effects of the near bed flows in two mountainous stream reaches on the structure of biofilm microbial guilds (autotrophs, heterotrophic bacteria, and heterotrophic protists) within and across trophic levels. Near bed flow velocity and turbulent kinetic energy were important physical drivers for structuring the communities within and across guilds of the multitrophic fluvial biofilms. The effects of flow were nested in a seasonal and spatial (across-streams) context. Changes in physicochemical factors (temperature, light, dissolved carbon, and nutrients) along the reaches were alike in both streams suggesting that environmental boundary conditions at larger temporal scales were responsible for the seasonal differences of biofilm communities, whereas locally microbial diversity was shaped by near bed flow. Typically, the abundance of autotrophs increased with flow, indicating that biofilms shifted toward increasing autotrophy with increasing shear forces. Filamentous autotrophs seemed to provide protected habitats from the shear forces for smaller sized bacteria. Heterotrophic protist abundance decreased with flow leading to decreasing grazer to prey ratio. Bacteria thus benefitted from a reduction in grazing pressure at faster flowing, more turbulent sites. Our results suggest that near bed flow can impact the magnitude and direction of matter fluxes through the microbial food web and possibly affect ecosystem functioning of fluvial biofilms

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    ALA- and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids

    Get PDF
    Synthesis of protoporphyrin IX (PpIX) in intact murine mammary cancer cell spheroids is reported from optical sections obtained using a laser scanning confocal fluorescence microscope. EMT6 spheroids 275–350 Ό m in diameter were incubated in 0.1–15 mM aminolevulinic acid (ALA) or 0.001–2 mM ALA-hexylester (h-ALA) to test the ability of both pro-drugs to diffuse into the spheroids and induce PpIX production. Spheroids incubated with ALA show significant fluorescence nonuniformity for all concentrations, with the outermost cells exhibiting greater porphyrin fluorescence. Comparable levels of fluorescence throughout the optical section are achieved with approximately 100-fold lower h-ALA concentrations, indicating that the interior cells maintain esterase activity and porphyrin synthesis and that h-ALA diffuses efficiently to the spheroid interior. Fluorescence gradients are less pronounced with h-ALA incubation, in part because of apparent saturation of esterase activity in the spheroid perimeter. Proliferating (Ki67 positive) and quiescent cell populations exhibit remarkably different h-ALA concentration dependencies. The incubation concentration resulting in maximum fluorescence with ALA is 10 mM, while the optimal concentration for h-ALA is 200-fold lower at 0.05 mM. Exceeding these optimal concentrations for both pro-drugs leads to an overall loss of fluorescence. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • 

    corecore