58 research outputs found

    Dose-Dependent Effects of Insulin-Like Growth Factor 1 in the Aged Olfactory Epithelium

    Get PDF
    Background: Olfaction is known to be impaired by aging. We hypothesized that insulin-like growth factor-1 (IGF-1) administered at an appropriate dose could prevent age-induced negative effects on olfactory receptor neurons (ORNs). We explored the effects of low- and high-dose administration of IGF-1 on the ORN cell system in aged mice and investigated the involvement of the cellular mechanisms of IGF-1 in the regeneration of ORNs in aged mice.Methods: We subcutaneously administered recombinant human IGF-1 (rhIGF-1) to 16-month-old male mice over 56 days, and then examined the histological effects of rhGF-1 on cellular composition, cell proliferation, and cell death in the aged olfactory epithelium (OE), by comparing among saline-treated and low- and high-dose rhIGF-1-treated mice.Results: Low-dose rhIGF-1 administration increased the numbers of olfactory progenitors, immature ORNs, and mature ORNs in the OE, despite an increase in Cas3+ apoptotic cells. Notably, high-dose rhIGF-1 administration increased the numbers of only immature ORNs, not olfactory progenitors and mature ORNs, with a concurrent increase in apoptotic cells.Conclusion: Our data suggest that in aged mice, IGF-1 administered at an appropriate dose could increase the number of mature ORNs and further human studies may contribute to the development of treatments for aging-related olfactory impairment

    Involvement of CD11b+ GR-1low cells in autoimmune disorder in MRL-Faslpr mouse

    Get PDF
    金沢大学医薬保健研究域医学系Objective: Myeloid-derived suppressor cells (MDSCs) have been identified as immunosuppressive cells in tumor-related inflammation. However, the pathogenesis of MDSCs for autoimmune disease has not been investigated as yet. The aim of this study was to address whether MDSCs contribute to autoimmune organ injury in lupus-prone mice. Methods: MDSCs were analyzed by flow cytometric staining of CD11b+ GR-1+ in MRL-Faslpr mice. CD4+ T-cell proliferation assay was performed by coculture with CD11b+ GR-1+ splenocytes. The percentage of immunosuppressive cells was examined during disease progression. Expression of chemokine receptor on immunosuppressive cells was analyzed, and chemotaxis assay was performed. Results: CD11b+ GR-1low cells had a suppressive effect on CD4+ T-cell proliferation, which was restored by an arginase-1 inhibitor. CD11b+ GR-1low cells increased in percentage during disease progression in kidney and blood. The number of migrated CD11b+ GR-1low cells increased in the presence of monocyte chemoattractant protein-1/CCL2. Conclusion: We assessed the involvement of CD11b+ GR-1low cells in autoimmune disorder in MRL-Faslpr mice. These cells regulate immunological responses via CCL2/CCR2 signaling. The regulation of immunosuppressive monocytes may provide novel therapeutic strategy for organ damage in autoimmune diseases. © 2010 Japanese Society of Nephrology.

    TCR Repertoire Analysis Reveals Mobilization of Novel CD8+ T Cell Clones Into the Cancer-Immunity Cycle Following Anti-CD4 Antibody Administration

    Get PDF
    Depletion of CD4+ cells using an anti-CD4 monoclonal antibody (anti-CD4 mAb) induces the expansion of tumor-reactive CD8+ T cells and strong antitumor effects in several murine tumor models. However, it is not known whether the anti-CD4 mAb treatment activates a particular or a broad spectrum of tumor-reactive CD8+ T cell clones. To investigate the changes in the TCR repertoire induced by the anti-CD4 mAb treatment, we performed unbiased high-throughput TCR sequencing in a B16F10 mouse subcutaneous melanoma model. By Inter-Organ Clone Tracking analysis, we demonstrated that anti-CD4 mAb treatment increased the diversity and combined frequency of CD8+ T cell clones that overlapped among the tumor, draining lymph node (dLN), and peripheral blood repertoires. Interestingly, the anti-CD4 mAb treatment-induced expansion of overlapping clones occurred mainly in the dLN rather than in the tumor. Overall, the Inter-Organ Clone Tracking analysis revealed that anti-CD4 mAb treatment enhances the mobilization of a wide variety of tumor-reactive CD8+ T cell clones into the Cancer-Immunity Cycle and thus induces a robust antitumor immune response in mice

    Novel Targeting to XCR1+ Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes

    Get PDF
    Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals

    Collagen adhesion gene is associated with blood stream infections caused by methicillin-resistant Staphylococcus aureus

    Get PDF
    Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) causes hospital- and community-acquired infections. It is not clear whether genetic characteristics of the bacteria contribute to disease pathogenesis in MRSA infection. We hypothesized that whole genome analysis of MRSA strains could reveal the key gene loci and/or the gene mutations that affect clinical manifestations of MRSA infection. Methods: Whole genome sequences (WGS) of MRSA of 154 strains were analyzed with respect to clinical manifestations and data. Further, we evaluated the association between clinical manifestations in MRSA infection and genomic information. Results: WGS revealed gene mutations that correlated with clinical manifestations of MRSA infection. Moreover, 12 mutations were selected as important mutations by Random Forest analysis. Cluster analysis revealed strains associated with a high frequency of bloodstream infection (BSI). Twenty seven out of 34 strains in this cluster caused BSI. These strains were all positive for collagen adhesion gene (cna) and have mutations in the locus, those were selected by Random Forest analysis. Univariate and multivariate analysis revealed that these gene mutations were the predictor for the incidence of BSI. Interestingly, mutant CNA protein showed lower attachment ability to collagen, suggesting that the mutant protein might contribute to the dissemination of bacteria. Conclusions: These findings suggest that the bacterial genotype affects the clinical characteristics of MRSA infection. (c) 2019 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases

    Combined insulin B:9-23 self-peptide and polyinosinic-polycytidylic acid accelerate insulitis but inhibit development of diabetes by increasing the proportion of CD4+Foxp3+ regulatory T cells in the islets in non-obese diabetic mice.

    Get PDF
    Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes. Combined treatment with B:9-23 peptide and polyinosinic-polycytidylic acid (poly I:C), but neither alone, induce insulitis in normal BALB/c mice. In contrast, the combined treatment accelerated insulitis, but prevented diabetes in NOD mice. Our immunofluorescence study with anti-CD4/anti-Foxp3 revealed that the proportion of Foxp3 positive CD4(+)CD25(+) regulatory T cells (Tregs) was elevated in the islets of NOD mice treated with B:9-23 peptide and poly I:C, as compared to non-treated mice. Depletion of Tregs by anti-CD25 antibody hastened spontaneous development of diabetes in non-treated NOD mice, and abolished the protective effect of the combined treatment and conversely accelerated the onset of diabetes in the treated mice. These results indicate that poly I:C combined with B:9-23 peptide promotes infiltration of both pathogenic T cells and predominantly Tregs into the islets, thereby inhibiting progression from insulitis to overt diabetes in NOD mice

    Ueha, Satoshi

    No full text

    Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    No full text
    Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs), then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS) to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE), and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF) expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction

    Reduction of Proliferating Olfactory Cells and Low Expression of Extracellular Matrix Genes Are Hallmarks of the Aged Olfactory Mucosa

    No full text
    Background: The incidence of olfactory impairment increases with age; however, the detailed molecular and cellular mechanisms underlying this increase are yet to be determined.Methods: We examined the influence of aging on olfactory receptor neurons (ORNs), which are maintained by a unique stem cell system, from olfactory progenitor cells to mature ORNs, by histological comparisons of the physiological status of the olfactory epithelium between young adult and aged mice. Furthermore, we clarified the expression of genes encoding inflammatory cytokines, neurotrophins, growth factors, and extracellular matrix proteins to reveal the molecular mechanisms underlying olfactory impairment caused by aging.Results: The numbers of mature and immature ORNs, but not olfactory progenitors, decreased in the aged olfactory epithelium, with a concurrent reduction in Ki-67-positive proliferating cells. Transcriptome analyses revealed an increase in Il6, encoding a component of senescence-associated secretary phenotypes (SASP), and a decrease in Igf1, encoding a growth factor for ORNs, in the aged nasal mucosa. Interestingly, expression levels of several extracellular matrix genes, including Col1a2, decreased in the aged nasal mucosa. Consistent with the transcriptional changes, the number of Col1a2-GFP-positive cells decreased in the aged lamina propria.Conclusions: Our data suggest that reduction in ORN number and cell proliferation, reduced extracellular matrix gene expression, and increased SASP contribute to olfactory impairment during aging
    corecore