7 research outputs found

    Self-Assembled Nanostructures of Peptide Amphiphiles: Charge Regulation by Size Regulation

    Get PDF
    Self-assembled nanostructures of peptide amphiphiles (PAs) with molecular structures C16K2 and C16K3 (where C indicates the number of carbon atoms in the alkyl chain and K is the lysine in the head group) were studied by a combination of theoretical modeling, transmission electron and atomic force microscopes, and acid-base titration experiments. The supramolecular morphology of the PAs (micelles, fibers, or lamellas) was dependent on the pH and ionic strength of the solution. Theoretical modeling was performed using a molecular theory that allows determining the equilibrium morphology, the size, and the charge of the soft nanoassemblies as a function of the molecular structure of the PA, and the pH and salt concentration of the solution. Theoretical predictions showed good agreement with experimental data for the pH-dependent morphology and size of the nanoassemblies and their apparent pKa's. Two interesting effects associated with charge regulation mechanisms were found: first, ionic strength plays a dual role in the modulation of the electrostatic interactions in the system, which leads to complex dependencies of the aggregation numbers with salt concentration; second, the aggregation number of the nanostructures decreases upon increasing the charge per PA. The second mechanism, charge regulation by size regulation, tunes the net charge of the assemblies to decrease the electrostatic repulsions. A remarkable consequence of this behavior is that adding an extra lysine residue to the charged region of the PAs can lead to an unexpected decrease in the total charge of the micelles.Fil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Vemulapalli, Sridhar. University Of Nebraska Medical Center; Estados UnidosFil: Udumula, Venkatareddy. University Of Nebraska Medical Center; Estados UnidosFil: Conda Sheridan, Martin. University Of Nebraska Medical Center; Estados UnidosFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    Investigation of Antibacterial Mode of Action for Traditional and Amphiphilic Aminoglycosides

    No full text
    Aminoglycoside represents a class of versatile and broad spectrum antibacterial agents. In an effort to revive the antibacterial activity against aminoglycoside resistant bacteria, our laboratory has developed two new classes of aminoglycoside, pyranmycin and amphiphilic neomycin (NEOF004). The former resembles the traditional aminoglycoside, neomycin. The latter, albeit derived from neomycin, appears to exert antibacterial action via a different mode of action. In order to discern that these aminoglycoside derivatives have distinct antibacterial mode of action, RNA-binding affinity and fluorogenic dye were employed. These studies, together with our previous investigation, confirm that pyranmycin exhibit the traditional antibacterial mode of action of aminoglycosides by binding toward the bacterial rRNA. On the other hand, the amphiphilic neomycin, NEOF004 disrupts the bacterial cell wall. In a broader perspective, it verifies that structurally modified neomycin can exert different antibacterial mode of action leading to the revival of activity against aminoglycoside resistant bacteria

    Chemo- and Site-Selective Alkyl and Aryl Azide Reductions with Heterogeneous Nanoparticle Catalysts

    No full text
    Site-selective modification of bioactive natural products is an effective approach to generating new leads for drug discovery. Herein, we show that heterogeneous nanoparticle catalysts enable site-selective monoreduction of polyazide substrates for the generation of aminoglycoside antibiotic derivatives. The nanoparticle catalysts are highly chemoselective for reduction of alkyl and aryl azides under mild conditions and in the presence of a variety of easily reduced functional groups. High regioselectivity for monoazide reduction is shown to favor reduction of the least sterically hindered azide. We hypothesize that the observed selectivity is derived from the greater ability of less-hindered azide groups to interact with the surface of the nanoparticle catalyst. These results are complementary to previous Staudinger reduction methods that report a preference for selective reduction of electronically activated azides

    Dual Optimization Approach to Bimetallic Nanoparticle Catalysis: Impact of M<sub>1</sub>/M<sub>2</sub> Ratio and Supporting Polymer Structure on Reactivity

    No full text
    A dual optimization approach to nanoparticle catalysis is reported in which both the composition of a bimetallic nanoparticle and the electronic properties of the supporting polystyrene-based polymer can be varied to optimize reactivity and chemoselectivity in nitroarene reductions. Ruthenium–cobalt nanoparticles supported on polystyrene are shown to catalyze nitroarene reductions at room temperature with exceptional activity, as compared with monometallic ruthenium catalysts. Both the identity of the second metal and the M<sub>1</sub>/M<sub>2</sub> ratio show a profound effect on the chemoselectivity of nitroarene reductions. These polymer-supported bimetallic catalysts are shown to react with nearly complete chemoselectivity for nitro group reduction over a variety of easily reducible functional groups. The electronic properties of the supporting polymer also have a significant impact on catalysis, in which electron-deficient polystyrenes enable 100% conversion to the aniline product in just 20 min at room temperature. Polymer effects are also shown to influence the mechanism of the reduction reaction, in addition to accelerating the rate, confirming the impact of the polymer structure on catalytic efficiency. These catalysts are easily prepared in a single step from commercial materials and can be readily recycled without loss of activity
    corecore