49 research outputs found

    Degradation of GSPT1 causes TP53-independent cell death in leukemia whilst sparing normal hematopoietic stem cells

    Get PDF
    Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR-Cas9 screens implicated decreased translation initiation as protective to GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to GSPT1 degradation. We defined two Crbn amino acids that prevent Gspt1 degradation in mice, generated a knock-in mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant AML

    Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors.

    Get PDF
    It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutations resulted in impaired degradation of BETs, promoting their resistance to pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations mapping to the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat patients with endometrial but not prostate cancer who harbor SPOP mutations

    Analysis of proteins and peptides on a chromatographic timescale by electron-transfer dissociation MS

    Get PDF
    Tutkimuksen tarkoituksena on selvittÀÀ, onko kaksikielisten lasten eri kielten sanastojen monipuolisuudessa eroavaisuuksia. TÀtÀ lÀhden tutkimaan vertailemalla substantiivien ja verbien sanemÀÀriÀ eri kielillÀ, selvittÀmÀllÀ sanastojen toisteisuutta sekÀ tutkimalla sanatoisteisuuden ja aineistossa kerran esiintyvien sanojen vÀlistÀ riippuvuutta. LisÀksi haluan selvittÀÀ, onko sukupuolten vÀlillÀ eroavaisuuksia sanaston monipuolisuutta tarkastellessa. TutkimuskysymyksiÀ syntyi kaksi. Eroaako kaksikielisten lasten eri kielten sanastojen monipuolisuus toisistaan, ja löytyykö sukupuolten vÀliltÀ eroavaisuuksia sanastojen monipuolisuuden osalta? EnsimmÀiseen tutkimuskysymykseen vastaan kolmella alakysymyksellÀ. Eroavatko lasten erikieliset tarinat sanemÀÀriltÀÀn toisistaan, onko sanasto toisteisempaa toisella kielellÀ kuin toisella, ja onko sanojen toisteisuuden ja aineistossa kerran esiintyvien sanojen vÀlillÀ yhteys? Tavoitteena on saada lisÀÀ tietoa kaksikielisten lasten sanaston monipuolisuudesta narratiivisella tutkimusmenetelmÀllÀ. On tÀrkeÀÀ saada tietoa kaksikielisten lasten sanaston monipuolisuudesta, sillÀ kaksi- ja monikielisten perheiden mÀÀrÀ on Suomessa koko ajan lisÀÀntymÀssÀ. Tutkimus on monimenetelmÀllinen tutkimus, sillÀ aineisto kerÀttiin laadullisin menetelmin, mutta analysoitiin mÀÀrÀllisesti. Aineisto kerÀttiin sadutusmenetelmÀllÀ kevÀÀn ja syksyn aikana 2019. TutkimushenkilöitÀ oli kahdeksan. Kahdeksan neljÀ-viisivuotiasta suomalaisranskalaista lasta, joiden toisen vanhemman Àidinkieli on suomi ja toisen ranska. Tutkimushenkilöiden valinnan kriteerinÀ oli myös se, ettÀ lapsi asuu Suomessa ja kÀy ranskankielistÀ pÀivÀkotia. Aineiston analyysissÀ kÀytettiin TTR-arvoa ja hapax legomenon -lekseemejÀ. TÀmÀn lisÀksi TTR-arvojen ja HL-lekseemien vÀlille laskettiin korrelaatio, jotta voidaan nÀhdÀ, onko sanojen toisteisuuden ja aineistossa kerran esiintyvien sanojen vÀlillÀ yhteys. Tutkimustuloksissa ilmeni, ettÀ suomen kielen sanasto on lapsilla monipuolisempaa kuin ranskan kielen sanasto. Sukupuolten vÀlillÀ ei ilmennyt huomattavia eroavaisuuksia sanastojen monipuolisuuden osalta. Eri mittareilla saatujen tulosten vÀlillÀ todettiin positiivinen korrelaatio molemmilla kielillÀ. TÀmÀ tutkimus on kuvaileva tutkimus, joten tutkimustuloksia ei ole tarkoitus yleistÀÀ

    Prostate cancer: Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer

    Full text link
    Cancer genome characterization has revealed driver mutations in genes that govern ubiquitylation; however, the mechanisms by which these alterations promote tumorigenesis remain incompletely characterized. Here, we analyzed changes in the ubiquitin landscape induced by prostate cancer-associated mutations of SPOP, an E3 ubiquitin ligase substrate-binding protein. SPOP mutants impaired ubiquitylation of a subset of proteins in a dominant-negative fashion. Of these, DEK and TRIM24 emerged as effector substrates consistently up-regulated by SPOP mutants. We highlight DEK as a SPOP substrate that exhibited decreases in ubiquitylation and proteasomal degradation resulting from heteromeric complexes of wild-type and mutant SPOP protein. DEK stabilization promoted prostate epithelial cell invasion, which implicated DEK as an oncogenic effector. More generally, these results provide a framework to decipher tumorigenic mechanisms linked to dysregulated ubiquitylation

    Lso2 is a conserved ribosome-bound protein required for translational recovery in yeast.

    No full text
    Ribosome-binding proteins function broadly in protein synthesis, gene regulation, and cellular homeostasis, but the complete complement of functional ribosome-bound proteins remains unknown. Using quantitative mass spectrometry, we identified late-annotated short open reading frame 2 (Lso2) as a ribosome-associated protein that is broadly conserved in eukaryotes. Genome-wide crosslinking and immunoprecipitation of Lso2 and its human ortholog coiled-coil domain containing 124 (CCDC124) recovered 25S ribosomal RNA in a region near the A site that overlaps the GTPase activation center. Consistent with this location, Lso2 also crosslinked to most tRNAs. Ribosome profiling of yeast lacking LSO2 (lso2Δ) revealed global translation defects during recovery from stationary phase with translation of most genes reduced more than 4-fold. Ribosomes accumulated at start codons, were depleted from stop codons, and showed codon-specific changes in occupancy in lso2Δ. These defects, and the conservation of the specific ribosome-binding activity of Lso2/CCDC124, indicate broadly important functions in translation and physiology

    Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase

    No full text
    Characterization of the proteome of organelles and subcellular domains is essential for understanding cellular organization and identifying protein complexes as well as networks of protein interactions. We established a proteomic mapping platform in live Drosophila tissues using an engineered ascorbate peroxidase (APEX). Upon activation, the APEX enzyme catalyzes the biotinylation of neighboring endogenous proteins that can then be isolated and identified by mass spectrometry. We demonstrate that APEX labeling functions effectively in multiple fly tissues for different subcellular compartments and maps the mitochondrial matrix proteome of Drosophila muscle to demonstrate the power of APEX for characterizing subcellular proteomes in live cells. Further, we generate “MitoMax,” a database that provides an inventory of Drosophila mitochondrial proteins with subcompartmental annotation. Altogether, APEX labeling in live Drosophila tissues provides an opportunity to characterize the organelle proteome of specific cell types in different physiological conditions

    H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs

    Get PDF
    Summary: Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1K3R3). We show that H2A.Z.1K3R3 is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1K3R3 mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs. : Shedding light on the contrasting functions of the histone variant H2A.Z.1 in gene regulation, Surface et al. show that H2A.Z.1 monoubiquitylation is required for the transcriptional repression of developmental promoters in mESCs by antagonizing downstream transcriptional activators including the BET bromodomain family member BRD2
    corecore