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SUMMARY

Histone variant H2A.Z occupies the promoters of
active and poised, bivalent genes in embryonic stem
cells (ESCs) to regulate developmental programs,
yet how it contributes to these contrasting states is
poorly understood. Here, we investigate the function
of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by muta-
tion of the PRC1 target residues (H2A.Z.1K3R3).
We show that H2A.Z.1K3R3 is properly incorporated
at target promoters in murine ESCs (mESCs), but
loss of monoubiquitylation leads to de-repression of
bivalent genes, loss of Polycomb binding, and faulty
lineage commitment. Using quantitative proteomics,
we find that tandembromodomain proteins, including
theBET familymemberBRD2, are enriched inH2A.Z.1
chromatin.We further show thatBRD2 isgainedatde-
repressed promoters inH2A.Z.1K3R3mESCs,whereas
BRD2 inhibition restores gene silencing at these sites.
Together, our study reveals an antagonistic relation-
ship between H2A.Z.1ub and BRD2 to regulate the
transcriptional balance at bivalent genes to enable
proper execution of developmental programs.

INTRODUCTION

Pluripotent cells must translate signaling cues into rapid tran-

scriptional responses during development to specify the many

cell types in the adult. The histone H2A variant H2A.Z has essen-

tial but poorly understood roles in early metazoan development

(Faast et al., 2001; van Daal and Elgin, 1992) and murine embry-

onic stem cell (mESC) differentiation (Creyghton et al., 2008; Hu

et al., 2013). In mESCs, H2A.Z is enriched at H3K4me3-marked

promoters of active genes and at silent but poised bivalent pro-

moters marked by both H3K4me3 and H3K27me3 (Creyghton

et al., 2008; Hu et al., 2013; Ku et al., 2012; Subramanian

et al., 2013). Bivalent genes, which encode the majority of devel-

opmental regulators inmESCs, are silent yet maintain the capac-

ity to be activated during differentiation (Surface et al., 2010;

Voigt et al., 2013). These data suggest that H2A.Z acts as a mo-
1142 Cell Reports 14, 1142–1155, February 9, 2016 ª2016 The Autho
lecular rheostat for transcriptional output (Subramanian et al.,

2015); however, we currently lack a mechanistic understanding

of how H2A.Z regulates the balance between gene activation

and repression.

Post-translational modification (PTM) of histones is important

for regulation of gene expression and can mark functional re-

gions of chromatin (Zhou et al., 2011). H2A.Z is subject to similar

PTMs as canonical histones including acetylation and ubiquityla-

tion. For example, H2A.Z amino-terminal acetylation correlates

with gene activation (Bruce et al., 2005; Hu et al., 2013; Ku

et al., 2012). Moreover, H2A.Z carboxy-terminal lysine residues

(K120, K121, and K125) can be monoubiquitylated by the Poly-

comb repressive complex 1 (PRC1) (Draker et al., 2011; Ku

et al., 2012; Sarcinella et al., 2007); however, the role of this

H2A.Z modification is not known. Prior work suggested that

PRC1-mediated H2A ubiquitylation (H2Aub) is important for

silencing bivalent genes in mESCs (de Napoles et al., 2004; En-

doh et al., 2012), possibly through pausing of RNA polymerase II

(RNAPII) at promoters (Stock et al., 2007). More recently, non-

canonical PRC1 that includes distinct subunits such as RYBP

and KDM2B/FBXL10 was shown to catalyze H2Aub, which in

turn recruits and stimulates PRC2 activity, reinforcing gene

repression (Blackledge et al., 2014; Cooper et al., 2014; Kalb

et al., 2014). Given that PRC1 also modifies H2A.Z, and that

H2A fails to compensate for loss of H2A.Z during early develop-

ment (Creyghton et al., 2008; Faast et al., 2001; Hu et al., 2013),

we hypothesized that H2A.Zub also plays important roles in

regulating transcriptional outcomes in mESCs.

H2A.Z facilitates interactions with specific chromatin-associ-

ated proteins to affect gene expression in a context-dependent

manner (Draker et al., 2012; Fujimoto et al., 2012; Li et al.,

2012). Moreover, histone PTMs, including monoubiquitylation,

often serve as binding platforms for downstream effectors

(Braun and Madhani, 2012). Here, we dissect the function of

H2A.Z.1monoubiquitylation (H2A.Z.1ub) by generating site-spe-

cific mutations in the C-terminal PRC1 target lysine residues

(K120R, K121R, and K125R; denoted H2A.Z.1K3R3). Using a

transgenic mESC system, we show that H2A.Z.1ub is necessary

for both proper induction of developmental programs and the

maintenance of bivalent chromatin, including PRC2 recruitment.

Furthermore, using a quantitative proteomics approach, we find

that BRD2, a member of the BET family of transcriptional
rs
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Figure 1. H2A.Z.1ub Regulates Bivalent Genes in mESCs

(A) mESCs expressing rtTA were infected with lentiviral particles with H2A.Z.1K3R3 and H2A.Z.1WT transgenes harboring a C-terminal YFP, under the control of a

tetOn promoter. Bottom: modified C-terminal lysine H2A.Z.1 residues. Upon addition of doxycycline, YFP+ cells were sorted and infected with a hairpin against

the 30 UTR of endogenous H2A.Z.1.

(B) Immunoblots of H2A.Z.1WT and H2A.Z.1K3R3 mESC histone extracts were probed with GFP, H3, H2Aub, and H2A.Z antibodies.

(legend continued on next page)
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activators, is enriched in H2A.Z.1 chromatin. BRD2 enrichment is

significantly increased at bivalent genes in H2A.ZK3R3 mESCs

coincident with gene activation, and BRD2 inhibition restores

silencing of bivalent genes. Collectively, our study suggests

that H2A.Z.1ub antagonizes BRD2 to maintain the balance be-

tween gene activation and repression in response to develop-

mental cues.

RESULTS

H2A.Z.1ub Is Dispensable for mESC Self-Renewal
H2A.Z monoubiquitylation (H2A.Zub) is enriched in H3K27me3

containing nucleosomes in mESCs (Ku et al., 2012) and on the

inactive X chromosome in human 293T cells (Sarcinella et al.,

2007); however, the function of this H2A.Z modification is

not known. Using tandem mass spectrometry (MS/MS), we

confirmed that RING1B, a catalytic component of PRC1, mono-

ubiquitylates three C-terminal lysines of H2A.Z (K120, K121, and

K125) in mESCs (Figures S1A–S1H). We next investigated

whether these lysine residues are subject to other modifications.

By analyzing rawmass spectrometry data frommESCs (Ku et al.,

2012), we confidently assigned signals to the unmodified and

ubiquitylated forms of H2A.Z118–127. In contrast, we were unable

to reliably detect acetylation or methylation of these sites (Fig-

ures S1F and S1G; Table S1). We also find that H2A.Zub levels

decrease upon mESC differentiation (Figure S1I), coincident

with decreased co-localization of H2A.Z and Polycomb com-

plexes at target genes (Creyghton et al., 2008; Ku et al., 2012).

We focused further analysis on the H2A.Z.1 isoform because it

is 20-fold more abundant than H2A.Z.2 in mESCs and essential

for early development (Faast et al., 2001; Subramanian et al.,

2013). To this end, mESC lines were generated that harbor either

a doxycycline-inducible H2A.Z.1 transgene with a C-terminal

YFP fusion (denoted H2A.Z.1WT) or an H2A.Z.1-YFP transgene

with the three lysine residues mutated to arginine (K120R,

K121R, and K125R; denoted H2A.Z.1K3R3) (Figures 1A and

S2A). These mutations resulted in near complete loss of H2A.Z

monoubiquitylation in mESCs as determined by immunoblot of

histone extracts (Figures 1B and S2A). We next engineered our

H2A.Z.1WT and H2A.Z.1K3R3 transgenic mESC lines to constitu-

tively express a short hairpin targeting endogenous H2A.Z.1,

resulting in �90% depletion of its mRNA and protein levels

with minimal effect on transgene levels (Figures S2A–S2C).
(C) Heatmap of ChIP-seq in H2A.Z.1WT and H2A.Z.1K3R3 mESCs displays simila

(Wamstad et al., 2012) are included for comparison. Heatmaps are centered on t

±2 kb. Bivalent gene classification is from Subramanian et al. (2013).

(D) Sequential ChIP using GFP followed by GFP or H2Aub (also recognizes H2A.Z

Error bars represent SD of triplicate reactions.

(E) Distribution of the log2 fold change in expression in H2A.Z.1K3R3 mESCs was p

trace represents all genes with RPKM of at least 1 in any sample and five unique r

that pass threshold were plotted independently.

(F) Box plots represent the log2 fold change in expression of either H2A.Z.1K3R3 o

(11,010), bivalent (1,611), or K4me3-/K27me3- (61) genes. Classification of bivale

median value; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5

represented by dots.

(G) Volcano plot of all genes that passed detection threshold were plotted by p v

(H) Top ten enriched categories using PANTHER Biological Process database ar

See also Figures S1 and S2.
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Similar results were observed with an independent hairpin (Fig-

ure S2B). Expression of the RNAi-resistant H2A.Z.1WT-YFP

transgene fully rescues H2A.Z.1 depletion (Subramanian et al.,

2013), establishing a system for directly investigating the role

of H2A.Z.1ub. Similar to induction of H2A.Z.1WT, we found that

expression of H2A.Z.1K3R3 in H2A.Z.1-depleted mESCs did not

appear to affect morphology, levels of pluripotency markers,

cell-cycle dynamics, or response to DNA-damaging agents (Fig-

ures S2D–S2G). These data suggest that H2A.Z.1ub is largely

dispensable for mESC self-renewal and may play critical roles

in early lineage commitment.

H2A.Z.1ub Is Enriched at Bivalent Promoters
H2A.Z is enriched at discrete genomic sites in mESCs, including

the majority of H3K4me3-marked transcriptional start sites

(TSSs) as well as a small fraction of distal enhancers (Hu et al.,

2013; Ku et al., 2012; Subramanian et al., 2013). Our prior work

showed that H2A.Z.1-YFP incorporation is highly similar to

endogenous H2A.Z as determined by chromatin immunoprecip-

itation sequencing (ChIP-seq) (Subramanian et al., 2013). Thus,

we asked whether loss of H2A.Z.1 monoubiquitylation affected

its chromatin incorporation. We found that H2A.Z.1WT and

H2A.Z.1K3R3 are similarly enriched in chromatin by fractionation

of mESCs lysates (Figure S2H). We also show that H2A.Z.1WT

and H2A.Z.1K3R3 nucleosomes contain overall similar global his-

tonemodification patterns (Figure S2I). In addition, we found that

H2A.Z.1K3R3 displays similar dynamics to H2A.Z.1WT in mESCs

by fluorescence recovery after photobleaching (FRAP) (Fig-

ure S2J), unlike mutation of the divergent acidic patch, which

leads to an increase in H2A.Z.1 dynamics (Subramanian et al.,

2013). We further demonstrate that conditional ablation of

RING1B did not alter H2A.Z incorporation at target genes

(Figure S2K).

We next performed ChIP-seq in H2A.Z.1WT and H2A.Z.1K3R3

mESCs using GFP antibodies. Both wild-type and mutant trans-

genes are similarly enriched at a large set of active (H3K4me3+)

and bivalent (H3K4me3+, H3K27me3+) genes (Spearman

correlation = 0.972; Figure 1C) as well as at a small number of

H2A.Z-enriched enhancers (Figure S2L). In total, 13,684 and

13,000 genes show H2A.Z.1 enrichment within 2 kb of a TSS in

H2A.Z.1WT and H2A.Z.1K3R3 mESCs, respectively. As examples,

H2A.Z.1K3R3 occupies both active promoters including Thra

as well as bivalent promoters including Nestin and genes
r incorporation at active and bivalent target genes. H3K4me3 and H3K27me3

ranscriptional start sites (TSSs) of all genes ranked by H2K27me3 and extend

ub) antibodies. % input is calculated using 2(Cp(Input)-Cp(ChIP))*(%of total input).

lotted using cumulative density function of log2(H2A.Z.1
K3R3/H2A.Z.1WT). Black

eads in each sample. Active (yellow trace) and bivalent (red trace) gene classes

r H2A.Z.1KD mESCs relative to H2A.Z.1WT mESCs at all (13,857 genes), active

nt and active genes is from Subramanian et al. (2013). Center line represents

times the interquartile range from the 25th and 75th percentiles, and outliers are

alue versus change in expression.

e displayed for upregulated genes compared to all genes.
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associated with the HoxA cluster, in a pattern similar to

H2A.Z.1WT (Figure S2M).

Our ChIP-seq data show that H2A.Z.1K3R3 occupies pro-

moters similar to endogenous H2A.Z.1WT; however, the locali-

zation pattern of H2A.Z.1ub is not known due to the lack of spe-

cific antibodies that distinguish H2Aub and H2A.Zub

(Figure S2I). To address this limitation, we performed sequential

ChIP by first enriching for H2A.Z.1 nucleosomes in H2A.Z.1WT

and H2A.Z.1K3R3 mESCs using a GFP antibody followed

by re-ChIP with an antibody that recognizes H2A/Zub.

H2A.Z.1K3R3 mESCs that lack H2A.Z.1ub were used as a nega-

tive control. Sequential ChIP demonstrates that H2A.Z.1ub is

largely enriched at bivalent promoters and low at active pro-

moters (Figure 1D). As a control, re-ChIP with GFP antibodies

shows that both H2A.Z.1WT and H2A.Z.1K3R3 are incorporated

similarly (Figure 1D). Collectively, these data suggest loss of

H2A.Z.1 monoubiquitylation does not affect global H2A.Z.1

incorporation or dynamics in mESCs.

H2A.Z.1ub Regulates Developmental Gene Expression
Programs
Given that the majority of enriched regions map to TSSs,

we asked whether loss of H2A.Z.1 monoubiquitylation

affects gene expression. We profiled the transcriptome of

H2A.Z.1K3R3 mESCs by RNA sequencing (RNA-seq) and found

that bivalent genes were expressed at higher levels compared

to H2A.Z.1WT controls (p < 2.2 3 10�16, Kolmogorov-Smirnov

test, two-sided) (Figure 1E). In contrast, levels of active genes

were largely unaffected in H2A.Z.1K3R3 mESCs, similar to

H2A.Z.1 depletion (Figures 1E and 1F) (Hu et al., 2013; Subra-

manian et al., 2013). Because bivalent genes are lowly ex-

pressed (Mikkelsen et al., 2007), we applied stringent threshold

criteria to reduce false positives in our analysis (expression of

R1 reads per kilobase per million [RPKM] in at least one sample

and at least five reads in every sample). A total of 9,667 active

genes and 816 bivalent genes passed these criteria. Specif-

ically, 370 and 107 of these genes are up- and downregulated,

respectively, in H2A.Z.1K3R3 mESCs using a cutoff of 1.5-fold

change and p value % 0.05 (Figure 1G). The set of 370 upregu-

lated genes significantly overlaps the 816 bivalent genes (p <

2.65 3 10�87, hypergeometric test).

Using the gene annotation tool PANTHER (Huang et al., 2009a,

2009b), we found that the upregulated genes function in cell

communication, signaling, and development (Figure 1H). In

contrast, we did not find significant overlap with bivalent genes

or enriched Gene Ontology (GO) terms among the downregu-

lated genes. Expression changes were validated using a second

independent H2A.Z.1 hairpin (Figure S2N). Notably, although

H2A.Z.1 depletion also leads to de-repression of bivalent genes

(Hu et al., 2013; Subramanian et al., 2013), we observed overall

higher expression of these genes in H2A.Z.1K3R3 mESCs (Fig-

ure 1F; ANOVA, p < 0.0001), suggesting that H2A.Z incorpora-

tion is critical for gene activation in response to developmental

signals.

H2A.Z.1ub Is Required for Proper mESC Differentiation
Because the precise regulation of bivalent genes is key for

proper lineage commitment (Subramanian et al., 2015), we
Cell R
next examined the differentiation capacity of H2A.Z.1K3R3

mESCs by allowing cells to aggregate into embryoid bodies

(EBs), a process that leads to multi-lineage differentiation similar

to the gastrulating embryo (ten Berge et al., 2008). Induction of

the H2A.Z.1WT transgene restores proper mESC differentiation

as evidenced by appropriate expression of germ layer markers

(Figures 2A–2C). In contrast, EBs generated from H2A.Z.1K3R3

mESCs failed to undergo multi-lineage differentiation, as evi-

denced by H&E-stained sections displaying distinct differences

in tissue representation relative to H2A.Z.1WT (Figure 2A). In

particular, H2A.Z.1K3R3 EBs lack neuroepithelial structures and

failed to activate the neural marker TUJ1 compared to

H2A.Z.1WT EBs (Figure 2B). Additionally, we found that genes

involved in neuroectoderm lineages (e.g., Sox1, Sox3, and

Pax6) are not properly induced in H2A.Z.1K3R3 EBs, whereas

mesendodermal genes are highly expressed (Figures 2C and

S3A). Hyperactivation ofWNT signaling during EB formation pro-

motes cardiacmesoderm and inhibits neuroectodermal differen-

tiation (ten Berge et al., 2008). We found that WNT signaling

genes including Wnt3A and Axin2 were upregulated in

H2A.Z.1K3R3 mESCs (Figures S3B and S3C). H2A.Z.1K3R3 EBs

also display increased nuclear b-catenin levels, reduced binding

of TCF3 at WNT target genes, and increased activity of a WNT

signaling reporter compared to H2A.Z.1WT controls (Figures

S3D–S3F). Furthermore, treatment with the WNT antagonist

KY02111 partially rescued their differentiation defects as shown

by activation of the neuroectodermal genes Sox3 and Pax6 (Fig-

ure 2C). These results suggest that H2A.Z.1ub is necessary for

coordinating specific transcriptional outputs in response to

developmental cues.

H2A.Z.1ub Is Necessary for Maintenance of Bivalent
Chromatin
The activity of PRC1 regulates bivalent gene expression,

potentially through RNAPII pausing (Stock et al., 2007), and/

or recruitment of PRC2 (Blackledge et al., 2014; Cooper

et al., 2014; Kalb et al., 2014). However, we found that expres-

sion of highly paused genes in mESCs (Rahl et al., 2010) is not

significantly affected in H2A.Z.1K3R3 mESCs (Figure 3A),

consistent with the markedly lower levels of RNAPII at bivalent

promoters compared to active genes (Figure S4A) (Williams

et al., 2015). Thus, we next asked whether H2A.Z.1ub, like

H2Aub, contributes to maintenance of PRC2 at bivalent genes

in mESCs. We performed ChIP-qPCR in H2A.Z.1K3R3 mESCs

and observed a significant decrease in the enrichment of the

PRC2 component SUZ12 at bivalent promoters, as well as

its corresponding mark H3K27me3 (Figures 3B and 3C). In

addition, PRC1 components including RING1B as well as

KDM2B, a key factor responsible for recruitment of non-ca-

nonical PRC1 to CpG islands (Blackledge et al., 2014; He

et al., 2013; Wu et al., 2013) were reduced at bivalent pro-

moters in H2A.Z.1K3R3 mESCs (Figures 3D and S4B). Con-

versely, loss of monoubiquitylation did not affect H3K27ac,

H4ac, or H2A.Zac levels and led to a slightly increase in levels

of H3K4me3, modifications associated with transcriptional ac-

tivity (Figures 3E and S4C–S4E). Together, these results sug-

gest that H2A.Z.1ub plays a key role in maintaining bivalent

chromatin and gene silencing in mESCs.
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A

d12 Embryoid Bodies
Bright Field H&E

B

IHC: TUJ1
d12 EBs

C
Neuroectoderm

Mesendoderm

H2A.Z.1WT + DMSO
H2A.Z.1K3R3 + DMSO
H2A.Z.1K3R3 + KY02111

(Wnt Antagonist)0 
1 
2 
3 
4 
5 
6 
7 

d0 d3 d6 d9 d12 

Wnt3A 

0 
5 

15 

25 

35 

45 

d0 d3 d6 d9 d12 

Mesp1 

0 

10 

20 

30 

40 

d0 d3 d6 d9 d12 

Foxa2 

0 

40 

80 

120 

d0 d3 d6 d9 d12 

Sox17 

0 

1 

2 

3 

4 

d0 d3 d6 d9 d12 

Sox1 

0 

1 

2 

3 

d0 d3 d6 d9 d12 

Sox3 

0 

1 

2 

3 

d0 d3 d6 d9 d12 

Pax6 

R
el

at
iv

e 
E

xp
re

ss
io

n 
R

el
at

iv
e 

E
xp

re
ss

io
n 

R
el

at
iv

e 
E

xp
re

ss
io

n 

days of EB formation

days of EB formation

H2A.Z.1K3R3

H2A.Z.1WT

days of EB formation

Figure 2. H2A.Z.1ub Is Necessary for Proper Lineage Commitment

(A) Bright-field and H&E staining of day 12 embryoid bodies from H2A.Z.1WT and H2A.Z.1K3R3 mESCs. Arrows indicate examples of neuroectoderm present in

H2A.Z.1WT EB sections.

(B) Immunohistochemistry staining of d12 H2A.Z.1WT and H2A.Z.1K3R3 EB sections with Tuj1, a marker of neural differentiation. Arrows indicate examples of

TUJ1-positive regions. Scale bar for all, 100 mm.

(C) Expression of lineage markers during EB time course indicates lack of neuroectoderm differentiation in H2A.Z.1K3R3 mESCs (red vs. black lines). Addition of

WNT inhibitor KY02111 to H2A.Z.1K3R3 mESCs 48 hr prior to and during EB formation restores multi-lineage differentiation (yellow lines). Expression is analyzed

by qRT-PCR with values normalized to H2A.Z.1WT+DMSO using Tubb5. Error bars represent SD of triplicate reactions.

See also Figure S3.
H2A.Z.1ub Interacts with Specific Proteins in mESCs
Histone post-translational modifications often function to recruit

downstream regulators (Braun and Madhani, 2012), and specif-

ically, ubiquitin moieties often mediate downstream interactions

with regulatory factors. Given that H2A.Z interacts with a distinct

set of binding partners compared to H2A (Draker et al., 2012; Fu-

jimoto et al., 2012), we reasoned that H2A.Z.1ub might mediate

interactions with specific chromatin-associated proteins. To test

this idea, we developed an approach that combines SILAC (sta-

ble isotope labeling of amino acids in cell culture) (Ong et al.,

2002) with immunoprecipitation (IP) and mass spectrometry to

quantitatively assess changes in chromatin associated protein

interactions (SILAC-IP) (Figure 4A). We first compared enriched

proteins in mESC lines containing either an H2A.Z.1-YFP or

H2A-YFP transgene (Subramanian et al., 2013) (Figures S5A

and S5B; Table S2). Proteins were labeled by culturing cells in

isotope containing media prior to IP, resulting in greater than

93% labeling efficiency as measured by the incorporation of

the heavy isotopes. SILAC-IP was performed on the soluble frac-

tion of micrococcal nuclease-treated nuclei. Our approach al-

lows for direct comparison between target proteins within one

experiment and internally controls for nonspecific as well as

YFP-associated interactions. To confidently identify H2A.Z.1-

specific interactions, we required representation of multiple

peptides in replicate samples from paired isotope swaps (e.g.,
1146 Cell Reports 14, 1142–1155, February 9, 2016 ª2016 The Autho
H2A.Z.1-YFP heavy and H2A-YFP light) (Figure S5C). Differential

enrichment was ranked by the fold change of ratio counts be-

tween paired samples and by a modified t-statistic for sig-

nificance of reproducibility between replicates (Mertins et al.,

2013; Sancak et al., 2013) (Figure 4B; Table S2). Validating

our approach, we identified nearly all members of the H2A.Z-

specific ATP-dependent deposition complex SRCAP among

the H2A.Z.1-enriched proteins (Ruhl et al., 2006) (Figures 4B

and S5D).

Given that many protein interactions are facilitated by specific

domains, we asked whether particular motifs were enriched

among the set of H2A.Z.1-interacting proteins (Franceschini

et al., 2013). Our analysis identified the bromodomain as the

most highly enriched motif (p value < 2e-3). Over 40 bromodo-

main-containing proteins exist in the mouse genome, whereas

only 8 harbor a tandem bromodomain motif (Filippakopoulos

et al., 2012). Five of these eight proteins are both expressed

in mESCs and enriched in H2A.Z.1 chromatin, including two

BET proteins (BRD2 and BRD3) and three proteins that harbor

an additional WD40 motif (BRWD2, BRWD3, and PHIP) (Figures

4B and 4C). Because BRD2 is the most highly expressed of the

tandem bromodomain members in mESCs and it is necessary

for murine development (Shang et al., 2009) (Figure S5E), we

focused on validating its interaction with H2A.Z.1 using two inde-

pendent approaches. First, we found that BRD2 is significantly
rs
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Figure 3. H2A.Z.1ub Is Necessary for Maintenance of Bivalent Chromatin

(A) Box plots represent the log2 fold change in gene expression in H2A.Z.1K3R3 relative to H2A.Z.1WTmESCs of RNAPII-bound genes, split into quartiles of RNAPII

traveling ratios (�2,459 genes/quartile) from Rahl et al. (2010) (left) or of active (11,010 genes) and bivalent (1,611) genes (right). Center lines represent the median

value; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, and outliers are

represented by dots.

(B–E) ChIPs for the PRC2 component, SUZ12 (B), H3K27me3 (C), PRC1 component RING1B (D), and H3K4me3 (E), were assayed by qPCR. Error bars represent

the SD of triplicate reactions.

See also Figure S4.
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Figure 4. H2A.Z.1ub Interacts with Chromatin-Associated Proteins in mESCs

(A) Schematic of the SILAC-IP approach.

(B) Volcano plot of average ratio of enrichment of SILAC intensity for H2A.Z.1-YFP over H2A-YFP against the p value for significance of reproducibility. Bait

proteins are indicated in green. Proteins in red are members of the SRCAP complex. Proteins in blue are tandem bromodomain proteins.

(C) Heatmap of SILAC Log2 ratio of H2A.Z.1-YFP IP over H2A-YFP IP for all tandem bromodomain proteins expressed mESCs.

(D) Volcano plot of average ratio of enrichment of SILAC intensity for H2A.Z.1WT-YFP over H2A.Z.1K3R3-YFP against the p value for significance of reproducibility.

Proteins are labeled as above.

(E) Heatmap of Log2 ratio of H2A.Z.1K3R3-YFP versus H2A.Z.1WT-YFP intensity for SRCAP complex proteins from SILAC-IP.

(F) Heatmap of Log2 ratio of H2A.Z.1K3R3-YFP versus H2A.Z.1WT-YFP intensity for tandem bromodomain proteins from SILAC-IP.

See also Figure S5.
enriched upon induction of H2A.Z.1-YFP using SILAC-IP com-

pared to uninduced conditions (p value < 0.01) (Table S3).

Second, BRD2 shows significantly greater association with

H2A.Z.1 in chromatin compared to H2A (p value < 0.1, t test)
1148 Cell Reports 14, 1142–1155, February 9, 2016 ª2016 The Autho
by bioluminescence resonance energy transfer (BRET) (Deplus

et al., 2013) (Figures S5F and S5G). In contrast, the BET protein

BRD4 exhibited neither differential enrichment by SILAC-IP nor

differential interaction by BRET (Figure S5G).
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We then asked if H2A.ZK3R3 alters the association with H2A.Z-

enriched proteins using our unbiased SILAC-IP approach. We

found 212 differentially enriched proteins between H2A.Z.1K3R3

and H2A.Z.1WT SILAC-IPs (Figure 4D; Table S4). Of these,

123 proteins including BRD2 are significantly enriched in

H2A.Z.1K3R3 chromatin compared to H2A.Z.1WT SILAC-IPs. In

contrast, other tandem bromodomain proteins as well as SRCAP

components showed little difference in enrichment (Figures 4D–

4F). BRD2 transcript and protein levels are similar between wild-

type and mutant cell lines indicating that differential enrichment

is not due to higher levels of BRD2 in H2A.Z.1K3R3 mESCs (Fig-

ures S5H and S5I). Together, our quantitative proteomic analysis

demonstrates that H2A.Z.1ub influences specific protein inter-

actions including with BRD2.

H2A.Z.1ub Inhibits BRD2 Recruitment to Bivalent Genes
We next performed ChIP-seq to analyze the global enrichment

patterns of BRD2 in mESCs. BRD2 is enriched at 11,536

genomic regions in wild-type mESCs. Of these regions, 58.7%

fall within 2 kb of a known TSS, leading us to focus on the role

of BRD2 at promoters (Figures 5A and 5B). In total, BRD2 local-

izes to the promoters of 6,856 genes of which 84% also harbor

H2A.Z.1 peaks. Moreover, BRD2 enrichment at promoters coin-

cides with active chromatin marks including H2A.Zac, H3K27ac

and H3K4me3 as well as RNAPII (Figures 5C and S6A), consis-

tent with the role of bromodomain-containing proteins in gene

activation (Draker et al., 2012; LeRoy et al., 2008). In contrast,

BRD2 is largely absent from bivalent genes, e.g., the HoxA locus

(Figures 5C and 5D). Indeed, genes co-enriched with both

H2A.Z.1 and BRD2 are more highly expressed than H2A.Z-en-

riched genes that lack BRD2 (p value < 1e-142, t test) (Figure 5E).

These results suggest a role for BRD2 with H2A.Z.1 at active

gene promoters.

Our proteomics data suggest that H2A.Z.1ub inhibits BRD2

recruitment. To test this idea, we performed ChIP-seq and

observed a significant increase in BRD2 enrichment at bivalent

promoters in H2A.Z.1K3R3 compared to H2A.Z.1WT mESCs (Fig-

ure 5F; median fold change 1.50, Wilcox test p < 2.4e-118,

compared to all genes), whereas active genes showed only a

slight gain (Figure 5F; median fold change 1.09, Wilcox test p <

0.05, compared to all genes). Moreover, BRD2 levels were not

significantly changed at either enhancers or super enhancers

(two-sided t test, median fold change enhancers 0.97, super en-

hancers 0.95) (Figure S6B). For example, BRD2 shows increased

enrichment at the bivalent gene Mesp1 as well as across the

HoxA gene cluster in H2A.Z.1K3R3 mESCs (Figure S6C), whereas

active genes including Hira and Cul1 show no apparent differ-

ence in BRD2 levels (Figure S6D). These results were indepen-

dently validated by ChIP-qPCR (Figure S6E). In total, we find

that 1,128 genes display a 2-fold or greater change in BRD2

enrichment in H2A.Z.1K3R3 mESCs across biological replicates

(Table S5). GO analysis revealed that genes gaining BRD2

have roles in signal transduction and developmental processes

(Figure 5G) and showed a significant increase in expression

compared to all genes (median change 1.3-fold, Wilcox test

p < 9.2e-17). In contrast, genes that displayed >2-fold depletion

of promoter BRD2 were largely unaffected in H2A.Z.1K3R3

mESCs (Figure 5H).
Cell R
BRD4, another BET family member, plays a key role in regu-

lating gene expression and cell identity in ESCs and inmany can-

cers (Asangani et al., 2014; Di Micco et al., 2014; Liu et al., 2014;

Wu et al., 2015). In contrast to BRD2, BRD4 enrichment was

more modestly affected at bivalent promoters in H2A.ZK3R3

mESCs (median fold change 1.29, Wilcox test p < 1.9e-17

compared to all genes) (Figures S6H and S6I). Moreover,

BRD4 was not differentially enriched in our SILAC-IP or BRET

analysis (Figures 4B, 4D, 4F, and S5G; Tables S2 and S4).

Notably, BRD2 and H2A.Z.1 both display a highly similar bimodal

distribution at promoters by ChIP-seq, whereas BRD4 shows a

distinct single peak (Figure S6F). Furthermore, BRD4 is more

highly enriched at enhancers, particularly at superenhancer clus-

ters (Figure S6G) (Whyte et al., 2013), whereas BRD2 and

H2A.Z.1 are most highly enriched at promoters (Figures S6F

and S6G). These data suggest H2A.Z.1 coordinates with BRD2

at promoters and that BET family members function indepen-

dently to regulate gene expression programs in mESCs.

H2A.Z.1ub Inhibits BRD2 Recruitment to Bivalent
Promoters
To test whether H2A.Z.1ub prevents BRD2 recruitment at biva-

lent promoters, thereby inhibiting gene activation, we first

treated mESCs with the pan-BET inhibitor JQ1 (Liu et al., 2014;

Wu et al., 2015). After 24 hr of treatment with 100 nM JQ1, the

increased expression of bivalent genes in H2A.Z.1K3R3 mESCs

was restored to basal levels (Figure 6A). H2A.ZK3R3 mESCs

exhibit de-repression of early mesoendoderm genes including

Brachyury and Mesp1, whereas neuronal genes such as Pax6

and Sox1 are largely unaffected (Figure 2C). Consistent with

these observations, Pax6 and Sox1 were largely unaffected by

addition of JQ1. We next investigated whether loss of gene

silencing in H2A.Z.1K3R3 mESCs can be rescued by direct

BRD2 inhibition. Transfection with specific small interfering

RNAs (siRNAs) resulted in significant BRD2 depletion after

48 hr (Figure 6B). Upon BRD2 depletion, bivalent genes showed

a marked decrease in expression in H2A.Z.1K3R3 mESCs,

whereas genes unaffected by JQ1 treatment remained un-

changed (Figure 6C). Similar results were observed with an

independent BRD2 siRNA (data not shown). In contrast, BRD4

depletion led to a slight increase in bivalent gene expression in

H2A.Z.1WT mESCs and to a dramatic increase in expression in

H2A.Z.1K3R3 mESCs (Figures 6D and 6E). These results are

consistent with a direct role for BRD2 in regulating gene pro-

moters, whereas BRD4 plays a pivotal role in regulating super-

enhancer-associated pluripotency genes such asOct4 (Di Micco

et al., 2014; Whyte et al., 2013).

H2A.Z.1ub is critical for gene silencing and maintenance

of PRC2 at bivalent genes, leading us to ask whether BRD2

antagonizes PRC2 to reinforce gene activation. To test this

idea, we analyzed SUZ12 occupancy at a subset of target genes

upon JQ1 treatment or BRD2 depletion in H2A.Z.1WT and

H2A.Z.1K3R3 mESCs. BET inhibition with 100 nM JQ1 for 24 hr

led to an increase in SUZ12 enrichment at bivalent genes in

H2A.Z.1WT, with only a slight increase in H2A.Z.1K3R3 mESCs,

whereas active genes were largely unaffected (Figure 6F). Simi-

larly, direct BRD2 inhibition resulted in increased SUZ12 occu-

pancy at bivalent genes in H2A.ZWT, but not in H2A.Z.1K3R3,
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Figure 5. H2A.Z.1ub Prevents BRD2 Recruitment to Bivalent Genes

(A) Genomic distribution pattern of BRD2 and H2A.Z.1 using CEAS (Shin et al., 2009).

(B) Average signal of ChIP-seq reads across the TSS of all genes (±5 kb) for BRD2 and H2AZ.1.

(C) Genome tracks of representative active and bivalent H2A.Z.1 target genes. Reads are normalized to reads per million per base pair.

(D) Average ChIP-seq reads for BRD2, H2A.Z.1, H3K4me3, H3K27ac, and H3K27me3 across the TSS of active and bivalent H2A.Z.1 enriched genes (±1 kb of

TSS) (Subramanian et al., 2013). H3K4me3 is plotted on secondary axis to the right.

(E) mRNA levels as measured by RNA-seq of H2A.Z.1 enriched genes with or without BRD2 (p value < 1e-142, two-sided t test). RPKM, reads per kilobase per

million. Boxplot indicates median and 25th and 75th percentile mRNA level, and whiskers extend 1.5 times the interquartile range.

(F) Box and whisker plot of median fold change in BRD2 ChIP-seq reads across the promoter regions (TSS ± 300 bp) of all genes as well as H2A.Z.1 enriched

active and bivalent genes. Box and whiskers defined as in (E).

(G) GO analysis of genes gaining BRD2 at their promoter as determined by DAVID (Huang et al., 2009a, 2009b).

(H) Box and whisker plot of the median fold change in expression of genes gaining BRD2 >2-fold at promoters (p value 6.3e-11, un-paired t test) and losing BRD2

(not significant). Box and whiskers defined as in (E).

See also Figure S6.
mESCs, whereas SUZ12 levels at active genes were largely un-

affected (Figure 6G). Taken together, these results suggest

H2A.Z.1ub is required for SUZ12 binding and functions to main-

tain the balance between gene silencing and activation of devel-

opmental programs in mESCs (Figure 6H).
1150 Cell Reports 14, 1142–1155, February 9, 2016 ª2016 The Autho
DISCUSSION

H2A.Z is incorporated at both active and bivalent promoters in

mESCs and appears to regulate contrasting gene expression

states. While H2A.Z acetylation is widely associated with gene
rs
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Figure 6. BRD2 Is Necessary for Gene Activation and Antagonizes PRC2 Recruitment at Bivalent Genes

(A) mRNA expression upon treatment of H2A.Z.1WT and H2A.Z.1K3R3 mESCs with the BET inhibitor JQ1 (at 100 nM) or DMSO control for 24 hr. Expression is

measured with qRT-PCR and normalized to H2A.Z.1WT+DMSO using Tubb5. Error bars represent SE of a triplicate set of experiments.

(B) mRNA and protein levels after 48 hr of BRD2 RNAi-mediated knockdown in both H2A.Z.1WT and H2A.Z.1K3R3 mESCs. Expression is normalized to a non-

targeting siRNA using Tubb5. Error bars represent SE of a triplicate set of experiments. Immunoblots for BRD2 and GAPDH performed on whole-cell lysates

following 48-hr siRNA treatment.

(C) mRNA expression for H2A.Z.1 bivalent and active target genes after BRD2 depletion, normalized as above.

(D) mRNA levels after 48 hr of BRD4 siRNA-mediated depletion in both H2A.Z.1WT and H2A.Z.1K3R3 mESCs. Expression is normalized to a non-targeting siRNA

using Tubb5. Error bars represent SE of a triplicate set of experiments.

(legend continued on next page)
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activation from yeast to mammals (Bruce et al., 2005; Hu et al.,

2013; Ku et al., 2012; Millar et al., 2006), how this variant contrib-

utes to gene silencing is poorly understood. Using a defined sys-

tem to directly test the function of the three C-terminal PRC1

monoubiquitylated lysine residues, we show that H2A.Z.1ub is

necessary for both the maintenance of bivalent chromatin in

mESCs and for the appropriate induction of developmental

programs.

Non-canonical PRC1 containing KDM2B catalyzes H2A ubiq-

uitylation and appears necessary for PRC2 recruitment and tran-

scriptional repression both in vitro and in vivo; however, a direct

role for H2Aub in this process was not established in these

studies (Blackledge et al., 2014; Cooper et al., 2014; Kalb et al.,

2014). We show that loss of H2A.Z.1ub leads to disruption of

poised, bivalent genes and to faulty mESC differentiation,

suggesting that H2A.Z.1ub contributes to transcriptional repres-

sion of lineage programs in mESCs. The observation that muta-

tion of the catalytic activity of PRC1 components RING1A/B

does not affect chromatin compaction at target regions despite

the partial loss of gene repression and H3K27me3 enrichment

(Endoh et al., 2012; Eskeland et al., 2010; Illingworth et al.,

2015) suggests neither H2Aub nor H2A.Zub contributes directly

to chromatin compaction. Notably, RING1B catalytic mutants

progress further in development than RING1B knockout em-

bryos, similar to the partial defects in lineage commitment we

observe upon differentiation of H2A.ZK3R3 mESCs. Together,

these data suggest that RING1B-mediated monoubiquitylation

is also an important PRC1 activity. In contrast, recent work

showed that the ubiquitylation activity of theRING1A/B homolog,

SCE, is not required for gene repression in Drosophila (Pengelly

et al., 2015). Thus, dissecting how histone variant incorporation

and PRC1 contribute to gene repression and chromatin compac-

tionwill lead to abetter understanding of how thesepathways co-

ordinate developmental programs and may explain the different

observations in Drosophila and mammalian systems.

Loss of H3K27me3 alone is not sufficient to confer transcrip-

tional activation (Marks et al., 2012), suggesting that activation

is mediated through a distinct mechanism. Our data suggest

that modulation of H2A.Z.1 by PTMs is critical for its interaction

with downstream activators such as BRD2. In support of this

model, studies show that BRD2 co-localizes with H2A.Z.2 in

melanoma cell lines to activate cell-cycle genes (Vardabasso

et al., 2015) and that H2A.Z is necessary to recruit BRD2 to acti-

vate target genes in response to hormone stimulation in LNCaP

cells (Draker et al., 2012). Thus, it is possible that the H2A.Z is

monoubiquitylated at the poised hormone-responsive genes

prior to stimulation.

How BRD2 drives transcription remains unclear, as it lacks

the p-TEFb interacting motif of BRD4 (Jang et al., 2005).
(E) mRNA expression for H2A.Z.1 bivalent and active target genes after treatmen

(F) SUZ12 ChIP-qPCR after treatment of H2A.Z.1WT or H2A.Z.1K3R3 mESCs with

desert regions. Error bars represent SE of a triplicate set of experiments.

(G) SUZ12 ChIP-qPCR after treatment of H2A.Z.1WT or H2A.Z.1K3R3 mESCs w

calculated as above.

(H) Model for BRD2 recruitment to bivalent genes. BRD2 is localized to active pro

absent from bivalent genes enriched for monoubiquitylated H2A.Z.1. H2A.Z.1K3R

antagonizes PRC2 at promoters of developmental genes.
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In vitro, BRD2 directly promotes transcription on a chromati-

nized template by acting as a chromatin remodeler (LeRoy

et al., 2008). Additionally, BRD2 can bind both TBP and Medi-

ator, both of which are normally absent from bivalent pro-

moters (Peng et al., 2007; Pinz et al., 2015). Thus, future

studies will be directed toward understanding how H2A.Z.1ub

inhibits gene activation through antagonism of BRD2. More

broadly, H2A.Z homologs in both yeast and C. elegans coordi-

nate with BET proteins to regulate gene expression states

(Shibata et al., 2014; Zhang et al., 2005), suggesting that coor-

dination between H2A.Z and BRD2 is an evolutionarily con-

served mechanism for controlling transcriptional output at

inducible genes. Together, our work establishes a previously

unknown role for H2A.Z.1ub in maintaining the transcriptional

balance of developmental programs during early lineage

commitment.

EXPERIMENTAL PROCEDURES

Growth of mESCs

V6.5 (129SvJae and C57BL/6; male) mESCs were plated with irradiated

murine embryonic fibroblasts (MEFs) and cultured using standard condi-

tions on gelatinized tissue culture plates as described (Subramanian

et al., 2013). For WNT signaling inhibition, mESCs were treated

with DMSO or the WNT signaling inhibitor KY02111 (10 mM) for 48 hr

and then aggregated to form EBs in the absence of leukemia inhibitory

factor (LIF) and in the presence of the inhibitor. Cells were treated

with 100 nM JQ1 or DMSO as a control. mESCs were transfected with

specific siRNAs to Brd2 and Brd4 (Origene) using 10 ml DharmaFect 1

(GE Healthcare). Expression was assayed 48 hr after the start of siRNA

transfection. Detailed protocols are included in Supplemental Experi-

mental Procedures.

Transgenic mESC Lines

H2A.Z.1WT- and H2A.Z.1K3R3-GFP constructs (which contain the H2A.Z.1 iso-

form) from Sarcinella et al. (2007) were modified by replacement with YFP as

described elsewhere (Subramanian et al., 2013). Detailed protocols are pro-

vided in Supplemental Experimental Procedures.

Embryoid Body Differentiation

mESCs were aggregated to form EBs by plating them in Corning Ultra-Low

Attachment Tissue Culture Plates (Corning) at a density of 100,000 cells/ml

in mESC media lacking LIF. Media was changed every other day, and EBs

were cultured for the indicated number of days.

Histone Extracts and Immunoblot

Histone extracts were prepared as described previously (Subramanian et al.,

2013). For immunoblot analysis, samples were resolved on SDS-PAGE gels,

proteins were transferred to a PVDF membrane, blocked with 5% milk in

PBST (0.1% Tween-20 in PBS [pH 7.4]), and blotted overnight with primary

antibody in PBST. The presence of the antigen was detected by horseradish

peroxidase (HRP)-conjugated secondary antibody. Antibodies listed in Sup-

plemental Experimental Procedures.
t with either a negative control siRNA or BRD4 siRNA, normalized as above.

either 100 nM JQ1 or DMSO. Enrichment values are normalized to two gene

ith either BRD2 siRNA or negative control siRNA. Enrichment values were

moters that lack H2A.Z.1ub (indicated by red circles), whereas BRD2 is largely
3 incorporation leads to BRD2 recruitment and gene activation, which further

rs



RNA Isolation, Real-Time qPCR, and RNA-Seq

Total RNA was extracted using TRIzol (Invitrogen) and reverse transcribed

using SuperScript III (Invitrogen) or M-MLV reverse transcriptase (Invitrogen)

and random hexamers according to manufacturer protocols. qPCR reactions

were performed with SYBR Green (KAPA Biosystems) and primers listed in

Table S6. Relative mRNA levels were determined in triplicate for each tran-

script using the manufacturer’s software (Advanced Relative Quantification

with Roche Lightcycler 480 Software Version 1.5) using Tubb5 transcript levels

for normalization. RNA-seq libraries were prepared as described elsewhere

(Subramanian et al., 2013). Detailed protocols are described in the Supple-

mental Experimental Procedures.

Chromatin Immunoprecipitation

ChIP was performed with 10–25 million cells as described previously (Wam-

stad et al., 2012). Detailed protocols including site-specific qPCR and high-

throughput sequencing as well as antibodies are described in the Supple-

mental Experimental Procedures.

SILAC-Based Immunoprecipitation and Mass Spectrometry

Cells were grown for 1 week in SILACmedium containing either R0K0 or R10K8.

Immunoprecipitation was performed using 109 cells for each condition. Native

ChIP was performed on a modified version as described previously (Umlauf

et al., 2004). Eluted proteins were separated by SDS gel. In-gel digestion

and mass spectrometry were conducted essentially as described previously

(Sancak et al., 2013). MS data were analyzed as in Cox and Mann (2008)

and Cox et al. (2011). Detailed explanation can be found in Supplemental

Experimental Procedures.
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