804 research outputs found

    Pharyngeal function after carotid endarterectomy

    Get PDF

    Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2.

    Get PDF
    In migraine and other primary headaches there is a strong vascular component. Besides the trigeminovascular components some of the associated symptoms point to the involvement of brain stem regions. The central limb of the trigeminal vascular pathway is its projection to the trigeminal nucleus caudalis (TNC) and to the C1-C2 levels of the spinal cord. The aim of the present study was to demonstrate the occurrence of some neurotransmitters in these regions in man. In both the TNC and in the Rexed's laminae I and II of the dorsal horns at the C1 and C2 levels there were numerous substance P immunoreactive fibres. Fibres containing calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) were moderately dense in number. Fibres containing vasoactive intestinal peptide (VIP) or nitric oxide synthase (NOS) were not seen in the TNC or at the C1 and C2 levels of the spinal cord

    Diminished levels of nasal S100A7 (psoriasin) in seasonal allergic rhinitis: an effect mediated by Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A7 is an antimicrobial peptide involved in several inflammatory diseases. The aim of the present study was to explore the expression and regulation of S100A7 in seasonal allergic rhinitis (SAR).</p> <p>Methods</p> <p>Nasal lavage (NAL) fluid was obtained from healthy controls before and after lipopolysaccharide (LPS) provocation, from SAR patients before and after allergen challenge, and from SAR patients having completed allergen-specific immunotherapy (ASIT). Nasal biopsies, nasal epithelial cells and blood were acquired from healthy donors. The airway epithelial cell line FaDu was used for <it>in vitro </it>experiments. Real-time RT-PCR and immunohistochemistry were used to determine S100A7 expression in nasal tissue and cells. Release of S100A7 in NAL and culture supernatants was measured by ELISA. The function of recombinant S100A7 was explored in epithelial cells, neutrophils and peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>Nasal administration of LPS induced S100A7 release in healthy non-allergic subjects. The level of S100A7 was lower in NAL from SAR patients than from healthy controls, and it was further reduced in the SAR group 6 h post allergen provocation. In contrast, ASIT patients displayed higher levels after completed treatment. S100A7 was expressed in the nasal epithelium and in glands, and it was secreted by cultured epithelial cells. Stimulation with IL-4 and histamine repressed the epithelial S100A7 release. Further, recombinant S100A7 induced activation of neutrophils and PBMC.</p> <p>Conclusions</p> <p>The present study shows an epithelial expression and excretion of S100A7 in the nose after microbial stimulation. The levels are diminished in rhinitis patients and in the presence of an allergic cytokine milieu, suggesting that the antimicrobial defense is compromised in patients with SAR.</p

    Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi

    Get PDF
    BACKGROUND: Smoking is known to cause chronic inflammatory changes in the bronchi and to contribute to airway hyper-reactivity, such as in bronchial asthma. To study the effect of smoking on the endothelin system in rat airways, bronchial segments were exposed to DMSO-soluble smoking particles (DSP) from cigarette smoke, to nicotine and to DMSO, respectively. METHODS: Isolated rat bronchial segments were cultured for 24 hours in the presence or absence of DSP, nicotine or DMSO alone. Contractile responses to sarafotoxin 6c (a selective agonist for ET(B )receptors) and endothelin-1 (an ET(A )and ET(B )receptor agonist) were studied by use of a sensitive myograph. Before ET-1 was introduced, the ET(B )receptors were desensitized by use of S6c. The remaining contractility observed was considered to be the result of selective activation of the ET(A )receptors. ET(A )and ET(B )receptor mRNA expression was analyzed using real-time quantitative PCR. The location and concentration of ET(A )and ET(B )receptors were studied by means of immunohistochemistry together with confocal microscopy after overnight incubation with selective antibodies. RESULTS: After being cultured together with DSP for 24 hours the bronchial segments showed an increased contractility mediated by ET(A )and ET(B )receptors, whereas culturing them together with nicotine did not affect their contractility. The up-regulation of their contractility was blunted by cycloheximide treatment, a translational inhibitor. No significant change in the expression of ET(A )and ET(B )receptor mRNA through exposure to DMSO or to nicotine exposure alone occurred, although immunohistochemistry revealed a clear increase in ET(A )and ET(B )receptors in the smooth muscle after incubation in the presence of DSP. Taken as a whole, this is seen as the presence of a translation mechanism. CONCLUSION: The increased contractility of rat bronchi when exposed to DSP appears to be due to a translation mechanism

    Neuropeptide Y2 Receptor (NPY2R) Expression in Saliva Predicts Feeding Immaturity in the Premature Neonate

    Get PDF
    Background: The current practice in newborn medicine is to subjectively assess when a premature infant is ready to feed by mouth. When the assessment is inaccurate, the resulting feeding morbidities may be significant, resulting in long-term health consequences and millions of health care dollars annually. We hypothesized that the developmental maturation of hypothalamic regulation of feeding behavior is a predictor of successful oral feeding in the premature infant. To test this hypothesis, we analyzed the gene expression of neuropeptide Y2 receptor (NPY2R), a known hypothalamic regulator of feeding behavior, in neonatal saliva to determine its role as a biomarker in predicting oral feeding success in the neonate. Methodology/Principal Findings: Salivary samples (n = 116), were prospectively collected from 63 preterm and 13 term neonates (post-conceptual age (PCA) 26 4/7 to 41 4/7 weeks) from five predefined feeding stages. Expression of NPY2R in neonatal saliva was determined by multiplex RT-qPCR amplification. Expression results were retrospectively correlated with feeding status at time of sample collection. Statistical analysis revealed that expression of NPY2R had a 95 % positive predictive value for feeding immaturity. NPY2R expression statistically significantly decreased with advancing PCA (Wilcoxon test p value,0.01), and was associated with feeding status (chi square p value = 0.013). Conclusions/Significance: Developmental maturation of hypothalamic regulation of feeding behavior is an essential component of oral feeding success in the newborn. NPY2R expression in neonatal saliva is predictive of an immatur

    Effect of CGRP and sumatriptan on the BOLD response in visual cortex

    Get PDF
    To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 μg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual cortex. This suggests that in healthy volunteers both CGRP and sumatriptan may exert their actions outside of the blood–brain barrier

    Increased expression of vascular endothelin type B and angiotensin type 1 receptors in patients with ischemic heart disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelin-1 and angiotensin II are strong vasoconstrictors. Patients with ischemic heart disease have elevated plasma levels of endothelin-1 and angiotensin II and show increased vascular tone. The aim of the present study was to examine the endothelin and angiotensin II receptor expression in subcutaneous arteries from patients with different degrees of ischemic heart disease.</p> <p>Methods</p> <p>Subcutaneous arteries were obtained, by biopsy from the abdomen, from patients undergoing coronary artery bypass graft (CABG) surgery because of ischemic heart disease (n = 15), patients with angina pectoris without established myocardial infarction (n = 15) and matched cardiovascular healthy controls (n = 15). Endothelin type A (ET<sub>A</sub>) and type B (ET<sub>B</sub>), and angiotensin type 1 (AT<sub>1</sub>) and type 2 (AT<sub>2</sub>) receptors expression and function were examined using immunohistochemistry, Western blot and <it>in vitro </it>pharmacology.</p> <p>Results</p> <p>ET<sub>A </sub>and, to a lesser extent, ET<sub>B </sub>receptor staining was observed in the healthy vascular smooth muscle cells. The level of ET<sub>B </sub>receptor expression was higher in patients undergoing CABG surgery (250% ± 23%; P < 0.05) and in the patients with angina pectoris (199% ± 6%; P < 0.05), than in the healthy controls (100% ± 28%). The data was confirmed by Western blotting. Arteries from CABG patients showed increased vasoconstriction upon administration of the selective ET<sub>B </sub>receptor agonist sarafotoxin S6c, compared to healthy controls (P < 0.05). No such difference was found for the ET<sub>A </sub>receptors. AT<sub>1 </sub>and, to a lesser extent, AT<sub>2 </sub>receptor immunostaining was seen in the vascular smooth muscle cells. The level of AT<sub>1 </sub>receptor expression was higher in both the angina pectoris (128% ± 25%; P < 0.05) and in the CABG patients (203% ± 41%; P < 0.05), as compared to the healthy controls (100% ± 25%). The increased AT<sub>1 </sub>receptor expression was confirmed by Western blotting. Myograph experiment did however not show any change in vasoconstriction to angiotensin II in CABG patients compared to healthy controls (P = n.s).</p> <p>Conclusion</p> <p>The results demonstrate, for the first time, upregulation of ET<sub>B </sub>and AT<sub>1 </sub>receptors in vascular smooth muscle cells in ischemic heart disease. These receptors may play a role in the pathophysiology of ischemic heart disease and could provide important targets for pharmaceutical interventions.</p

    Effects of anandamide in migraine: data from an animal model

    Get PDF
    Systemic nitroglycerin (NTG) produces spontaneous-like migraine attacks in migraine sufferers and induces a condition of hyperalgesia in the rat 4 h after its administration. Endocannabinoid system seems to be involved in the modulation of NTG-induced hyperalgesia, and probably, in the pathophysiological mechanisms of migraine. In this study, the analgesic effect of anandamide (AEA) was evaluated by means of the formalin test, performed in baseline conditions and following NTG-induced hyperalgesia in male Sprague–Dawley rats. AEA was administered 30 min before the formalin injection. In addition, the effect of AEA (administered 30 min before NTG injection) was investigated on NTG-induced Fos expression and evaluated 4 h following NTG injection. AEA induced a significant decrease in the nociceptive behavior during both phases of the formalin test in the animals treated with vehicle, while it abolished NTG-induced hyperalgesia during the phase II. Pre-treatment with AEA significantly reduced the NTG-induced neuronal activation in nucleus trigeminalis caudalis, confirming the results obtained in our previous study, and in area postrema, while the same treatment induced an increase of Fos expression in paraventricular and supraoptic nuclei of the hypothalamus, parabrachial nucleus, and periaqueductal grey. The study confirms that a dysfunction of the endocannabinoid system may contribute to the development of migraine attacks and that a pharmacological modulation of CB receptors can be useful for the treatment of migraine pain
    corecore