165 research outputs found

    <記録II>ハミル館一〇〇年の歩み : 1918~2018

    Get PDF
    Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among the renewable energy systems, a great deal of research has been conducted especially on photovoltaic, wind energy and fuel cell in the recent years. One of the hybrid renewable energy systems consisting of 5 kWp photovoltaic panels, 800 Wp wind turbines and 2.4 kWp fuel cell modules was installed at Clean Energy House (CEH), Pamukkale University in Denizli, Turkey. To protect this laboratory, a "Lightning Protection System" was installed at the CEH. In this study, design and installation processes of a lightning protection system for the hybrid renewable energy system at the CEH are considered. III. 7, bibl. 15 (in English; abstracts in English and Lithuanian)

    Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae

    Get PDF
    Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies
    corecore