263 research outputs found

    Reanalysis of the binary neutron star merger GW170817 using numerical-relativity calibrated waveform models

    No full text
    We reanalyze gravitational waves from a binary-neutron-star merger GW170817 using a numerical-relativity (NR) calibrated waveform model, the TF2+_KyotoTidal model. By imposing a uniform prior on the binary tidal deformability Λ~\tilde{\Lambda} the symmetric 90%90\% credible interval of Λ~\tilde{\Lambda} is estimated to be 481359+436481^{+436}_{-359} (402279+465402^{+465}_{-279}) for the case of fmax=1000 Hzf_\mathrm{max}=1000~\mathrm{Hz} (2048 Hz2048~\mathrm{Hz}), where fmaxf_\mathrm{max} is the maximum frequency in the analysis. We also reanalyze the event with other waveform models: two post-Newtonian waveform models (TF2_\_PNTidal and TF2+_\_PNTidal), the TF2+_\_NRTidal model that is another NR calibrated waveform model used in the LIGO-Virgo analysis, and its upgrade, the TF2+_\_NRTidalv2 model. While estimates of parameters other than Λ~\tilde{\Lambda} are broadly consistent among different waveform models, our results indicate that there is a difference in estimates of Λ~\tilde{\Lambda} among three NR calibrated waveform models. The difference in the peak values of posterior probability density functions of Λ~\tilde{\Lambda} between the NR calibrated waveform models: the TF2+_\_KyotoTidal and TF2+_\_NRTidalv2 models for fmax=1000 Hzf_\mathrm{max}=1000~\mathrm{Hz} is about 40 and is much smaller than the width of 90%90\% credible interval, which is about 700. The systematic error for the NR calibrated waveform models will be significant to measure Λ~\tilde{\Lambda} in the case of GW170817-like signal for the planned third generation detectors's sensitivities

    A scalar field condensation instability of rotating anti-de Sitter black holes

    Full text link
    Near-extreme Reissner-Nordstrom-anti-de Sitter black holes are unstable against the condensation of an uncharged scalar field with mass close to the Breitenlohner-Freedman bound. It is shown that a similar instability afflicts near-extreme large rotating AdS black holes, and near-extreme hyperbolic Schwarzschild-AdS black holes. The resulting nonlinear hairy black hole solutions are determined numerically. Some stability results for (possibly charged) scalar fields in black hole backgrounds are proved. For most of the extreme black holes we consider, these demonstrate stability if the ``effective mass" respects the near-horizon BF bound. Small spherical Reissner-Nordstrom-AdS black holes are an interesting exception to this result.Comment: 34 pages; 13 figure

    Degenerate Rotating Black Holes, Chiral CFTs and Fermi Surfaces I - Analytic Results for Quasinormal Modes

    Full text link
    In this work we discuss charged rotating black holes in AdS5×S5AdS_5 \times S^5 that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface operators in a subsector of N=4\mathcal{N}=4 SYM. We add a massless uncharged scalar to the five dimensional supergravity theory, such that it still forms a consistent truncation of the type IIB ten dimensional supergravity and analyze its quasinormal modes. Separating the equation of motion to a radial and angular part, we proceed to solve the radial equation using the asymptotic matching expansion method applied to a Heun equation with two nearby singularities. We use the continued fraction method for the angular Heun equation and obtain numerical results for the quasinormal modes. In the case of the supersymmetric black hole we present some analytic results for the decay rates of the scalar perturbations. The spectrum of quasinormal modes obtained is similar to that of a chiral 1+1 CFT, which is consistent with the conjectured field-theoretic dual. In addition, some of the modes can be found analytically.Comment: 41 pages, 1 figure, LaTeX; v2: typos corrected, references adde

    KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector

    Get PDF
    The recent detections of gravitational waves (GWs) reported by LIGO/Virgocollaborations have made significant impact on physics and astronomy. A globalnetwork of GW detectors will play a key role to solve the unknown nature of thesources in coordinated observations with astronomical telescopes and detectors.Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitationalwave Telescope), a new GW detector with two 3-km baseline arms arranged in theshape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.KAGRA's design is similar to those of the second generations such as AdvancedLIGO/Virgo, but it will be operating at the cryogenic temperature with sapphiremirrors. This low temperature feature is advantageous for improving thesensitivity around 100 Hz and is considered as an important feature for thethird generation GW detector concept (e.g. Einstein Telescope of Europe orCosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GWdetector based on laser interferometry. The installation and commissioning ofKAGRA is underway and its cryogenic systems have been successfully tested inMay, 2018. KAGRA's first observation run is scheduled in late 2019, aiming tojoin the third observation run (O3) of the advanced LIGO/Virgo network. In thiswork, we describe a brief history of KAGRA and highlights of main feature. Wealso discuss the prospects of GW observation with KAGRA in the era of O3. Whenoperating along with the existing GW detectors, KAGRA will be helpful to locatea GW source more accurately and to determine the source parameters with higherprecision, providing information for follow-up observations of a GW triggercandidate

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    corecore