74 research outputs found

    MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance

    Get PDF
    The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations

    Effects of angiotensin-I and ischemia on functional recovery in isolated hearts

    Get PDF
    FUNDAMENTO: A ressuscitação de parada cardíaca pode apresentar disfunção miocárdica determinada pelo tempo da isquemia, e a inibição da enzima conversora de angiotensina (ECA) pode reduzir a disfunção cardíaca durante a reperfusão. OBJETIVO: Investigar os efeitos da angiotensina-I e diferentes períodos de isquemia na recuperação funcional em corações de ratos isolados. MÉTODOS: Os corações isolados de ratos Wistar (n = 45; 250-300 g) foram submetidos a diferentes períodos de isquemia global (20, 25 ou 30 min) e reperfundidos (30 min) com o tampão Krebs-Henseleit, ou com a adição de 400 nmol/L de angiotensina-I, ou com 400 nmol/L de angiotensina-I + 100 µmol/L de captopril durante o período de reperfusão. RESULTADOS: A derivada positiva máxima de pressão (+dP/dt max) e o produto frequência-pressão foram reduzidos nos corações expostos à isquemia de 25 min (~ 73%) e à isquemia de 30 min (~ 80%) vs. isquemia de 20 min. A pressão diastólica final do ventrículo esquerdo (PDFVE) e a pressão de perfusão (PP) foram aumentadas nos corações expostos à isquemia de 25 min (5,5 e 1,08 vezes, respectivamente) e à isquemia de 30 min (6 e 1,10 vezes, respectivamente) vs. isquemia de 20 min. A angiotensina-I ocasionou uma diminuição no +dP/dt max e no produto frequência-pressão (~ 85-94%) em todos os períodos de isquemia e um aumento na PDFVE e na PP (6,9 e 1,25 vezes, respectivamente) apenas na isquemia de 20 min. O captopril foi capaz de reverter parcial ou completamente os efeitos da angiotensina-I na recuperação funcional nas isquemias de 20 e 25 min CONCLUSÃO: Os dados sugerem que a angiotensina-II participa direta ou indiretamente no dano pós-isquêmico e que a capacidade de um inibidor da ECA atenuar esse dano depende do tempo de isquemia.BACKGROUND: Cardiac arrest resuscitation can present myocardial dysfunction determined by ischemic time, and inhibition of the angiotensin-converting enzyme (ACE) can reduce cardiac dysfunction during reperfusion. OBJECTIVE: To investigate the effects of angiotensin-I and different periods of ischemia on functional recovery in isolated rat hearts. METHODS: Isolated hearts from Wistar rats (n=45; 250-300 g) were submitted to different periods of global ischemia (20, 25 or 30 min) and reperfused (30 min) with Krebs-Henseleit buffer alone or with the addition of 400 nmol/L angiotensin-I, or 400 nmol/L angiotensin-I + 100 mmol/L captopril along the reperfusion period. RESULTS: The maximal positive derivative of pressure (+dP/dt max) and rate-pressure product were reduced in hearts exposed to 25 min ischemia (~73%) and 30 min ischemia (~80%) vs. 20 min ischemia. Left ventricular end-diastolic pressure (LVEDP) and perfusion pressure (PP) were increased in hearts exposed to 25 min ischemia (5.5 and 1.08 fold, respectively) and 30 min ischemia (6 and 1.10 fold, respectively) vs. 20 min ischemia. Angiotensin-I caused a decrease in +dP/dt max and rate-pressure product (~85-94%) in all ischemic periods and an increase in LVEDP and PP (6.9 and 1.25 fold, respectively) only at 20 min ischemia. Captopril was able to partially or completely reverse the effects of angiotensin-I on functional recovery in 20 min and 25 min ischemia. CONCLUSION: These data suggest that angiotensin-II directly or indirectly participates in the post-ischemic damage, and the ability of an ACE inhibitor to attenuate this damage depends on ischemic time.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNPqFAPESPFAPERG

    Physical exercise improves insulin sensitivity of rats exposed to cigarette smoke

    Get PDF
    INTRODUÇÃO E OBJETIVO: Sabe-se que o tabagismo pode provocar alterações cardiovasculares e redução na sensibilidade à insulina, e que o exercício físico melhora este quadro. O objetivo do estudo foi avaliar o efeito do tabagismo e da prática de atividade física sobre a sensibilidade à insulina em músculo cardíaco de ratos, através da avaliação de expressão do transportador de glicose GLUT4. MÉTODOS: Ratos machos Wistar foram divididos em quatro grupos: (CS) controle, (CE) controle exercitado, (FS) fumante sedentário e (FE) fumante submetido ao exercício físico. Os grupos FS e FE foram submetidos à combustão de quatro cigarros/30 min/60 dias, 2x/dia. Os grupos CE e FE executaram corrida em esteira rolante durante 60 min/60 dias. Foi realizado teste de tolerância à insulina, e a expressão de GLUT4 no coração foi feita através de Western Blotting - ECL e RT-PCR. Foi utilizado método estatístico descritivo e o teste ANOVA, e as diferenças entre os grupos foram consideradas significantes quando P < 0,05. RESULTADOS: Nem o tabagismo nem a atividade física alteraram o peso corpóreo (CS: 364,7 ± 9,7; CE: 372,4 ± 7,2, FS: 368,9 ± 6,7; FE: 376,4 ± 7,8g) e o peso do coração (CS: 1,12 ± 0,05; CE: 1,16 ± 0,04; FS: 1,14 ± 0,05; FE: 1,19 ± 0,05g). A sensibilidade à insulina foi reduzida no grupo fumante, porém, a prática de exercício físico melhorou este quadro (CS: 3,7 ± 0,3; CE: 5,28 ± 0,5*; FS: 2,1 ± 0,7*; FE: 4,8 ± 0,09** %/min; *P < 0,05 vs. CS, **P < 0,05 vs. FS). Os conteúdos de RNAm e de proteína não se alteraram entre os grupos. Porém, quando se calculou o conteúdo total de proteína GLUT4 por grama de tecido, observou-se que o tabagismo causou redução e que o exercício induziu aumento neste parâmetro (CS: 119,72 ± 9,98; CE: 143,09 ± 9,09; FS: 84,36 ± 10,99*; FE: 132,18 ± 11,40# UA/g tecido, *P < 0,05 vs. CS, #P < 0,01 vs. FS). CONCLUSÃO: Conclui-se que o tabagismo reduz a sensibilidade à insulina e a capacidade do coração captar glicose. Já a prática de exercício físico moderado reverte este quadro por completo.GOAL: Smoking can cause cardiovascular diseases and reduction on insulin sensitivity. This study evaluated the effect of smoking and associated moderate physical activity on the insulin sensitivity in the heart by GLUT4 gene expression. METHODS: Male Wistar rats were divided into 4 groups: (C) control, (Ex) exercised, (SS) sedentary smoker and (ES) exercised smoker. SS and ES groups were submitted to cigarette smoke exposition, 30 min/2x a day/60 days. Ex and EF groups performed running on a treadmill, during 60min/60 days. GLUT4 protein and mRNA contents analysis was performed by Western Blotting and RT-PCR, respectively. RESULTS: The results showed that neither smoking nor physical activity changed body weight (C: 364.7 ± 9.7, Ex: 372.4 ± 7.2, SS: 368.9 ± 6.7, ES: 376.4 ± 7.8 g) and heart weight (C: 1.12 ± 0.05; Ex: 1.16 ± 0.04; SS: 1.14 ± 0.05; ES: 1.19 ± 0,05g). Insulin sensitivity was reduced in sedentary smoker group, and exercise improved this condition (C: 3.7 ± 0.3; Ex: 5.28 ± 0.5 *; SS: 2.1 ± 0.7 *; ES: 4.8 ± 0.09 **; *P <0.05 vs C, ** P <0.05 vs. SS). mRNA and protein contents did not change among the groups. On the other hand, smoking caused reduction, and exercise provoked increase in GLUT4 total content per gram of heart (C: 119.72±9.98; Ex: 143.09±9.09; SS: 84.36±10.99*; ES: 132.18±11.40# AU/ g tissue, *P<0.05 vs C, #P<0.01 vs SS). CONCLUSION: We concluded that smoking reduces insulin sensitivity and the cardiac ability in uptaking glucose, which can be reversed by moderate physical exercise.FAPES

    Resistive training reduces inflammation in skeletal muscle and improves the peripheral insulin sensitivity in obese rats induced by hyperlipidic diet

    Get PDF
    OBJETIVO: Investigar em ratos obesos o efeito da prática de exercício resistido sobre a sensibilidade à insulina e sobre a expressão de citocinas pró-inflamatórias e de transportador de glicose em músculo solear. MATERIAIS E MÉTODOS: Ratos Wistar alimentados com dieta hiperlipídica (grupos obesos) foram submetidos ao protocolo de exercício tipo jump squat. A sensibilidade à insulina e a expressão gênica de Tnf-&#945;, SOCS3 e GLUT4 foram comparadas entre os grupos obesos sedentários (OS) e exercitados (OE) e controles sedentários (CS) e exercitados (CE). RESULTADOS: A sensibilidade à insulina estava reduzida no grupo OS e elevada no OE. Os conteúdos de RNAm de Tnf-&#945; e de SOCS3 estavam aumentados no músculo esquelético do grupo OS e reduzidos no OE. O conteúdo proteico e de RNAm de GLUT4 não diferiu entre os grupos. CONCLUSÃO: O exercício resistido reverte o quadro de resistência à insulina periférica e de inflamação no músculo esquelético de obesos induzidos por dieta.OBJECTIVE: To determine if resistive exercise protocol can modulate Tnf-&#945;, SOCS3 and glucose transporter GLUT4 genes expression in skeletal muscle, and peripheral insulin sensitivity in obese rats induced by hyperlipidic diet. MATERIALS AND METHODS: Wistar obese rats induced by hyperlipidic diet were subjected a resistive exercise protocol as jump squat. Insulin sensitivity and mRNA content of Tnf-&#945;, SOCS3 and GLUT4 were assayed and compared among the groups: obese sedentary (OS) and exercised (OE), control sedentary (CS) and exercised (CE). RESULTS: The mRNA content of Tnf-&#945; and SOCS3 has increased in skeletal muscle from OS and has decreased in OE group. The protein and GLUT4 mRNA contents were correlated but they did not change among the groups. Peripheral insulin sensitivity has increased in the OE compared to OS group. CONCLUSION: The resistive exercise reverses the peripheral insulin resistance and the inflammatory state in skeletal muscle from diet-induced obese rats

    Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Get PDF
    OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>;7 times), bradycardic responses (>;4 times), and vagal (~38%) and sympathetic effects (~36%) were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance

    High glucose concentration stimulates NHE-1 activity in distal nephron cells: the role of the Mek/Erk1/2/p90RSK and p38MAPK signaling pathways

    Get PDF
    AIMS: \ud \ud In models of diabetes, distal nephron cells contribute to glucose uptake and oxidation. How these cells contribute to the use of glucose for the regulation of H(+) extrusion remains unknown. We used Madin-Darby Canine Kidney (MDCK) cells to investigate the effect of acute or chronic high glucose concentration on the abundance and activity of the Na(+)/H(+) exchanger (NHE-1).\ud \ud METHODS: \ud \ud Using RT-PCR, we also evaluated the mRNA expression for sodium glucose co-transporters SGLT1 and SGLT2. Protein abundance was analyzed using immunoblotting, and intracellular pH (pHi) recovery was evaluated using microscopy in conjunction with the fluorescent probe BCECF/AM. The Na(+)-dependent pHi recovery rate was monitored with HOE-694 (50 µM) and/or S3226 (10 µM), specific NHE-1 and NHE-3 inhibitors.\ud \ud RESULTS: \ud \ud MDCK cells did not express the mRNA for SGLT1 or SGLT2 but did express the GLUT2, NHE-1 and NHE-3 proteins. Under control conditions, we observed a greater contribution of NHE-1 to pHi recovery relative to the other H(+) transporters. Acute high glucose treatment increased the HOE-694-sensitive pHi recovery rate and p-Erk1/2 and p90(RSK) abundance. These parameters were reduced by PD-98059, a Mek inhibitor (1 µM). Chronic high glucose treatment also increased the HOE-694-sensitive pHi recovery rate and p-p38MAPK abundance. Both parameters were reduced by SB-203580, a p38MAPK inhibitor (10 µM).Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (grant numbers 07/58966-7; 12/04831-1)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant number 471946/2009-5

    Increased SGLT1 expression in salivary gland ductal cells correlates with hyposalivation in diabetic and hypertensive rats

    Get PDF
    Background\ud Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. \ud Findings\ud By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. \ud Conclusions\ud SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjectsSao Paulo Foundation State for Research (FAPESP) 07/50554-1FAPESP, 2009/16502-

    SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    Get PDF
    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it.CAPESFederal University of UberlandiaFAPEMIGFAPEALFAPESPFAPEAL fellowshipUniv Fed Alagoas, Inst Biol Sci & Hlth, Alagoas, BrazilUniv Fed Sao Paulo, Dept Physiol, Sao Paulo, BrazilUniv Fed Uberlandia, Natl Reference Ctr Leprosy & Sanit Dermatol, Uberlandia, MG, BrazilUniv Sao Paulo, Inst Biomed Sci, Dept Physiol, Sao Paulo, BrazilUniv Fed Uberlandia, Inst Genet & Biochem, Uberlandia, MG, BrazilUniv Calif Davis, Dept Med Microbiol & Immunol, Davis, CA USAUniv Fed Uberlandia, Inst Biomed Sci, Dept Physiol, Uberlandia, MG, BrazilUniv Fed Sao Paulo, Dept Physiol, Sao Paulo, BrazilFAPESP: 201/04831-1Web of Scienc

    Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Get PDF
    OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (&gt;7 times), bradycardic responses (&gt;4 times), and vagal (similar to 38%) and sympathetic effects (similar to 36%) were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance
    corecore