380 research outputs found

    Communication: Resonance reaction in diffusion-influenced bimolecular reactions

    Get PDF
    We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new "resonant reaction" behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance, the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis

    The Feminisation U, cultural norms, and the plough

    Get PDF
    The Feminisation U describes the tendency of female labour force participation (FLFP) to first decline and then rise in the process of economic development. While the Feminisation U is often presented as a ‘stylised fact’ of development, empirical support for it is mixed. Here, we show that cultural norms inherited from ancestral plough use exert a moderating influence on the shape of the Feminisation U. Specifically, we find a significantly U-shaped path of FLFP only in countries whose ancestors employed a plough-based agricultural technology. The shape of the U-curve becomes progressively more muted as the share of a country's ancestors that practiced plough agriculture decreases. In countries with little or no legacy of historical plough use, the time path of FLFP is effectively flat. This pattern of results is robust to correcting for dynamic panel bias, instrumenting for per-capita income, and controlling for other potential effect modifiers. Our findings are compatible with a nuanced reading of the main theoretical models proposed in the literature to explain the Feminisation U

    Competitive adsorption of multiple proteins to nanoparticles: the Vroman effect revisited

    Get PDF
    Proteins adsorbed from the blood plasma change nanoparticles inter- actions with the surrounding biological environment. In general, the ad- sorption of multiple proteins has a non-monotonic time dependence, that is, proteins adsorbed at first may slowly be replaced by others. This “Vro- man effect” leads to a highly dynamic protein corona on nanoparticles that profoundly influences the immune response of the body. Thus, the temporal evolution of the corona must be taken into account when consid- ering applications of nanocarriers in, e.g., nanomedicine or drug delivery. Up to now, the Vroman effect is explained solely in terms of diffusion: Smaller proteins which diffuse faster are adsorbed first while larger ones, having a stronger interaction with the surface, are preferred at equilib- rium. Here we use dynamic density functional theory (DDFT) including steric and electrostatic interactions to provide a full model for the tem- poral evolution of the protein corona. In particular, we demonstrate that proper consideration of all interactions leads to Vroman-like adsorption signatures in widely different scenarios. Moreover, consideration of ener- getic terms predicts both competitive as well as co-operative adsorption. In this way, DDFT provides a reacher picture of the evolution of the dynamic protein coron

    A general theory of DNA-mediated and other valence-limited interactions

    Full text link
    We present a general theory for predicting the interaction potentials between DNA-coated colloids, and more broadly, any particles that interact via valence-limited ligand-receptor binding. Our theory correctly incorporates the configurational and combinatorial entropic factors that play a key role in valence-limited interactions. By rigorously enforcing self-consistency, it achieves near-quantitative accuracy with respect to detailed Monte Carlo calculations. With suitable approximations and in particular geometries, our theory reduces to previous successful treatments, which are now united in a common and extensible framework. We expect our tools to be useful to other researchers investigating ligand-mediated interactions. A complete and well-documented Python implementation is freely available at http://github.com/patvarilly/DNACC .Comment: 18 pages, 10 figure

    Modeling Au nanostar geometry in bulk solutions.

    Get PDF
    The findings within make it possible to reference gold nanostars based on their geometric properties, similar to how a radius describes a nanosphere, rather than just the LSPR of the structure-the current practice. The average tip approximation presented reduces the complexity of nanostars in discrete dipole approximation simulations. By matching the projected area and LSPR of the modeled nanostars to synthesized nanostars, the volume, surface area, and number of tips can be approximated without a lengthy characterization process. Knowing the nanoparticle geometry can determine drug carrier capacity, an approximate number of hot spots for EM imaging, and how the particle will interact with cells. The geometric data obtained will drive the biological application and increase the usability of this particle class

    BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    Full text link
    In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices

    Catalysis by metallic nanoparticles in solution: thermosensitive microgels as nanoreactors

    Get PDF
    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g. dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic activity of the nanoparticles by external triggers. In particular, single nanoparticles embedded in a thermosensitive network made from poly(N-isopropylacrylamide) (PNIPAM) have become the most-studied examples of such hybrids: immersed in cold water, the PNIPAM network is hydrophilic and fully swollen. In this state, hydrophilic substrates can diffuse easily through the network, and react at the surface of the nanoparticles. Above the volume transition located at 32°C, the network becomes hydrophobic and shrinks. Now hydrophobic substrates will preferably diffuse through the network and react with other substrates in the reaction catalyzed by the enclosed nanoparticle. Such "active carriers", may thus be viewed as true nanoreactors that open new ways for the use of nanoparticles in catalysis. In this review, we give a survey on recent work done on these hybrids and their application in catalysis. The aim of this review is threefold: we first review hybrid systems composed of nanoparticles and thermosensitive networks and compare these "active carriers" to other colloidal and polymeric carriers (e.g. dendrimers). In a second step we discuss the model reactions used to obtain precise kinetic data on the catalytic activity of nanoparticles in various carriers and environments. These kinetic data allow us to present a fully quantitative comparison of different nanoreactors. In a final section we shall present the salient points of recent efforts in the theoretical modeling of these nanoreactors. By accounting for the presence of a free-energy landscape for the reactants' diffusive approach towards the catalytic nanoparticle, arising from solvent-reactant and polymeric shell-reactant interactions, these models are capable of explaining the emergence of all the important features observed so far in studies of nanoreactors. The present survey also suggests that such models may be used for the design of future carrier systems adapted to a given reaction and solvent

    Impact of Silicon Foliar Application on the Growth and Physiological Traits of Carthamus tinctorius L. Exposed to Salt Stress

    Get PDF
    Althought safflower is a tolerant crop against many environmental stresses, but its yield and performance reduce under stress. The aim of this experiment was to investigate the effect of silicon (Si) application on the possibility of increasing salinity resistance and related mechanisms in safflower. A greenhouse experiment was conducted to investigate the effects of Si spraying (0, 1.5 and 2.5 mM) on safflower plants grown under salt stress condition (non-saline and 10 dS m−1). Salinity reduced seedling emergence percent and rate, growth parameters and disrupted ion uptake but increased emergence time and specifc leaf weight. Spraying of Si increased plant height, fresh and dry weight, leaf area, relative water content (RWC), potassium, calcium and silicon content, while sodium absorption was decreased. As a result, the K+/Na+ and Ca2+/Na+ ratios were increased. Elevated ion contents and ratios indicate an enhanced selectivity of ion uptake following silicon application and may increase ion discrimination against Na+. Treatment with 2.5 mM Si showed the most positive effect on the measured growth traits. Decrement in leaf area ratio under salinity indicates a more severe effect of salinity on leaf area compared to biomass production. On the other hand, silicon reduced the specific leaf weight under stress and non-stress conditions, which revalues the positive effects of silicon on leaf area expansion. Improvement of RWC may a reason for the icrease in leaf area and biomass production. Data shows that spraying with Si especialy with 2.5 mM can reduce salinity stress damage to safflower and increase biomass production
    • 

    corecore