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We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular
reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system
exhibits a new “resonant reaction” behavior with rate enhancement if an appropriately defined
fluctuation decay length is of the order of the system size. Importantly, we find that in the prox-
imity of resonance, the standard reciprocal additivity law for diffusion and surface reaction rates
is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings
may have important repercussions on the correct interpretation of various kinetic reaction problems
in complex systems, as, e.g., in biomolecular association or catalysis. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4942998]

Bimolecular reactions constitute key processes for
function in physical chemistry and biology.1,2 The first step in
such a reaction is the diffusive particle approach which gives
rise to an intrinsic diffusion rate k. The second step involves a
chemical reaction once particles are close to contact, described
by a surface rate ksurf. The mean rate of the total reaction is
provided by the standard reciprocal additivity law

k−1
tot = k−1 + k−1

surf. (1)

In a simple two-body picture, typically the famous
Smoluchowski-Debye expression kS for the diffusion-
controlled rate k is employed, describing the diffusive
encounter rate of a particle with diffusion constant D to
reach the second particle modeled as a spherical sink with
effective radius Rs. If the diffusion proceeds across a static
energy landscape U(r), the final expression is1–4

k−1
S =

 ∞

Rs

dr
exp[βU(r)]

4πDr2 . (2)

However, in complex systems that exhibit multiple degrees of
freedom, the effective potential energy U(r) along a convenient
reaction coordinate r may thermally fluctuate in space and
time between multiple states.1,2,5,6 Relevant examples can be
found in the binding of ligands to conformationally gated
proteins7–11 or weakly hydrophobic pockets,12,13 association
kinetics of biomolecules with fluctuating charges,14,15 polymer
translocation16 or folding,17 and catalytic reactions in stimuli-
responsive nanoreactors.18,19

In those cases, one can expect significant alteration of
total reaction rates originating from fluctuations of the energy
landscape, as indicated by the very related, but “inverse”
problem of the activated escape over fluctuating potential
barriers.20–27 Here, a fascinating resonance phenomenon,

a)joachim.dzubiella@helmholtz-berlin.de

called “resonant activation,” with rate enhancement at critical
fluctuation time scales was observed. That this phenomenon
falls not into the framework of stochastic resonance has been
nicely discussed in the paper by Schmitt et al.27 However, to
the best of our knowledge, and somewhat surprisingly given
the wealth of literature on resonant activation, the consequence
of barrier fluctuations on diffusion-influenced reactions has
not been explored, yet.

In this communication, we close this gap by studying
the problem of diffusion-influenced reaction rates in the
presence of a spherically symmetric step-barrier potential
fluctuating between multiple states within the classical,
spherical Smoluchowski-Debye setup. This model system,
while still a valid prototype and approximation of many
important realistic scenarios, directly applies to the geometry
of so-called yolk-shell nanoreactors where a central catalyst
(sink) is embedded within a hydrogel shell.18,19 Near its
critical solution temperature, the polymer shell strongly
fluctuates27 and an unexplained dip appears superimposed on
the temperature dependence of the rate predicted by standard
theory.18 Here, we demonstrate by both exact analytical theory
and stochastic simulations that the phenomenon of resonance
with rate enhancement can indeed be observed in diffusion-
influenced reactions if the time scale of the barrier fluctuations
couples to those of the diffusion-reaction process. Second, we
show that in the proximity of the “resonance reaction,” the
standard (and exact for non-fluctuating barriers) additivity
law for diffusion and surface reactions, Eq. (1) is violated due
to the multiple dynamical coupling of time scales. Together,
these findings have important repercussions on the correct
interpretation of various kinetic reaction problems in complex,
fluctuating systems.7–19

Our minimalistic model is illustrated in Fig. 1. As
in the classical Smoluchowski-Debye picture for diffusion-
controlled reactions1,2 over static potentials, the diffusional
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FIG. 1. Sketch of our model system consisting of a spherical sink particle
(grey sphere) and a fluctuating step-barrier (red). The sink radius is Rs, while
the barrier is positioned between radial distances a and b. The gap between
the sink and the barrier is thus l = a−Rs. The scaled barrier width we then
define as g l = b−a. In this illustration, the barrier fluctuates between two
states (dark and light red) with barrier heights U0 and U1 and transition rates
W01,W10, respectively.

approach of ideal reactants over an energy landscape towards
a central spherical sink with radius Rs is considered. We set
Rs = 1 as our unit length scale in the remainder of the paper. As
energy landscape, we consider a step-barrier potential, defined
by the piece-wise function Un(r) = Un [Θ(r − a) − Θ(r − b)],
where Un is the barrier height of state n of N possible
states, l = a − Rs is its radial distance to the sink surface,
and we define the barrier width as gl = b − a, g being the
ratio between barrier width and the length l. In this way,
as long as g ≈ 1, l is a convenient measure of the system
size. The spatial intervals in r with constant potential, namely,
Rs ≤ r < a, a ≤ r < b, and r > b will be referred to as (I), (II),
and (III) in the following, respectively. Note that in Fig. 1, only
two states are exemplified while our mathematical approach
is completely general for multiple states.

We now assume that the barrier height switches
stochastically between the N states according to a discrete
time reversible Markov process η(t). If we further consider
that this process is not influenced by the reactant, or in other
words that the probability for the external potential to be in a
specific state does not depend on the presence of the reactant,
the evolution of the coordinate of a single reactant follows the
stochastic differential equation (SDE)

dr⃗
dt
= ∇⃗ 1

γ
f (r)η(t) + √2Dε⃗(t), (3)

where ε(t) is white Gaussian noise with time correlation
⟨ε(t)ε(t ′)⟩ = δ(t − t ′), and η(t) ∈ [U0, . . . ,UN−1] and f (r)
= Θ(r − a) − Θ(r − b) define the height and shape of the
potential barrier. The friction constant γ sets our time scale
and is related to the reactant self-diffusion constant D through
the Einstein relation γ = kBT/D, where kBT is the thermal
energy, our natural energy scale. As implicit in all works
using the classical Smoluchowski-Debye picture of diffusion
on an energy landscape, decoupling the state of the external

environment from the reactant field as we also do here is
an approximation. This approximation should be a valid
assumption for weakly interacting and dilute reactants, but is
likely to break down for strongly correlated systems.

An equivalent description of the problem can be given
in terms of a combined reaction-diffusion equation for the
particle density function ρn(r⃗ , t) of the discrete variable
n = 0, . . . ,N − 1 of the potential and the continuous variable
r⃗ of the overdamped particles, via

∂

∂t
ρ(r⃗ , t) = {F +W} ρ(r⃗ , t), (4)

where F is the Fokker-Planck operator

F = diag

∇⃗Un

γ
(δ(r − a) − δ(r − b)) êr + D∇⃗2


, (5)

with êr being the unit vector in radial direction, and W
is the transition rate matrix of the Markov process for the
barrier switching. ρ(r⃗ , t) = (ρ0(r⃗ , t), . . . , ρN−1(r⃗ , t))T denotes
the vector of particle density functions related to each state of
the potential barrier. Since the underlying Markov process of
W is time reversible, the transition rate matrix satisfies detailed
balance, i.e., Wmn exp(−βFn) = Wnm exp(−βFm), where Wmn

is the switching rate from state n to state m of the external
potential, and Fn(m) is the underlying free-energy of the
system/environment determining the external potential in the
n(m) state. This free-energy should not be confused with
the potential energy felt by the reactant in the n(m) state,
previously labeled Un. This also implies that the particle
density vector at infinite distance, where any effect due to the
potential is lost, is simply equal to the constant equilibrium
(bulk) vector ρ(eq) ofW.

With these prerequisites, it is now possible to find a
similarity transform Ti j = [ρ(eq)

n ]1/2δi, j such that the resulting
T−1WT = S is symmetric.28 This symmetric matrix can then
be diagonalized by an orthogonal transformation D resulting
in D†SD = −diag[λn]. It can be shown29 that λn>0 > 0
and λ0 = 0 with corresponding eigenvector D0,n = [ρ(eq)

n ]1/2.
Therefore we can give a steady-state solution ρ(r⃗) = TDρ̃(r⃗)
to Eq. (4) in terms of eigenfunctions ofW via

ρ̃
( j)
0 (r) = c( j)0,1 + c( j)0,2

1
r
,

ρ̃
( j)
n,0(r) = c( j)

n,1
1
r

exp

−r


λn

D


+ c( j)

n,2
1
r

exp

r


λn

D



(6)

separately for the regions j = (I), (II), and (III), exploiting
the fact that the Fokker-Planck operator F is invariant under
the transformations T and D for r , a,b. The coefficients c( j)

n,k
have to be obtained from boundary (density and flux) matching
conditions at r = a,b, see the supplementary material.30 From
the exact solution (6), it is visible that the spatial influence
of the potential fluctuations decays with a certain fluctuation
decay length equal to

rd =




λm

D




−1

(7)

that only depends on the diffusion constant D of the Brownian
particles and the largest nonzero eigenvalue λm of the
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transition rate matrix. In a simple two-state case, λm expresses
essentially the transition rate between the two states. Hence,
the decay length describes the mean diffusive path of a particle
after its disturbance by a fluctuation and thus is a measure for
the spatial range of the action of the fluctuation.

Given the general form of density profiles Eqs. (6), the
diffusion-influenced reaction rate is given by

ρ∞k = 4πDR2
s


n

∂ρ
(I )
n (r)
∂r

������Rs

, (8)

where the density is calculated by imposing the proper
boundary condition at the sink, and ρ∞ =


n ρ

eq
n with ρeq

being the equilibrium (bulk) vector according to W. For per-
fectly adsorbing conditions, ρn(r = Rs) = 0 and ρn(r → ∞)
= ρ

eq
n , whereas for partially adsorbing boundaries (so-called

radiative boundary conditions), the density and its derivative
at the sink are coupled through the equation,

4πDR2
s


n

∂ρIn(r)
∂r

�����Rs

= ksurf


n

ρ
(I )
n (r)���Rs

. (9)

The coefficients c(k)i, j are calculated from the boundary and
matching conditions analytically via a Mathematica31 script.
The density profiles and the resulting reaction rate are obtained
via Eqs. (6) and via (8) or (9).

The simplest possible setup in the just developed
analytical framework is that of a two state barrier that
switches between one off (U0 = 0) and one on (U1 , 0)
state symmetrically, i.e., the on → off and off → on rates
are equal, that is, W01 = W10 = W , i.e., the free energy of
the environment of these two states is the same. We study
this minimalistic two-state setup because it provides a clean
basis for a detailed study of effects solely coming from the
coupling of the individual time scales of barrier fluctuations
and diffusive transport, without any complexity of having a
spectrum of time scales. In this case, it can be easily shown that
the eigenvalues are λ0 = 0 and λ1 = 2W , giving a fluctuation
decay length of rd =


D/(2W ).

We independently check our analytical treatment using
numerical Brownian Dynamics (BD) simulations32 where the
single particle SDE Eq. (3) is discretized in time and then used
to describe an ensemble of independent particle trajectories.
Details on the analytical and numerical evaluations, in
particular, the lengthy (but exact) equation for the rate in the
two-state case can be found in the supplementary material.30

For the aforementioned two-state symmetric system, we
calculate the radial steady-state density profiles ρn resulting
from the reverse transform of Eq. (6). The results for the
density profiles for fully adsorbing boundary conditions and
parameters U1 = 3 kBT , l = 5, and g = 1 and for three different
transition rates, expressed by rd = 250, 2.5, and 0.25, are
shown in Fig. 2. We also plot the total density profile
ρ̄ = (ρ0 + ρ1)/2. A qualitative consideration of these results
shows that for small rates (large decay length rd = 250, panel
(a)), the profiles ρn are close to their respective steady-state
distributions33 without any switching. In this slow fluctuation
limit, the total profile ρ̄ is thus given essentially by the
weighted sum of the respective steady-state distributions.
For high rates (small decay length rd = 0.25, panel (c)), the

FIG. 2. Analytic results for steady-state density profiles ρ0, ρ1 for two states
of the fluctuating repulsive barrier. Also shown is the total density profile
ρ̄ = (ρ0+ρ1)/2. All parameters but the decay length are fixed: a = 6Rs,
b = 11Rs, l = 5, g = 1, U0= 0, U1= 3 kBT . The decay length is (a) rd= 250,
(b) rd= 2.5, and (c) rd= 0.25.

steady-state profiles are all very similar: perturbations are
on a small time scale and the profiles converge to the same
limit where the reactants see an average potential barrier of
height Ū = 1.5 kBT . These slow and fast limits are also known
in escape problems over fluctuating barriers.20 Intermediate,
much more complex behavior is observed for values of the
decay length comparable to the barrier dimensions (rd = 2.5,
panel (b)). Now the perturbations are significant on the system
scale. In particular, note that for this intermediate rd, the total
density ρ̄ between sink and barrier is higher than for both the
slow and fast limits, indicating an increase of reactants close
to the sink “pumped” by the fluctuating barrier.

The behavior of the density profiles directly affects the
resulting reaction rates, as shown in Fig. 3, where we plot
the reaction rate scaled by Smoluchowski limit Eq. (2) for
U0 = 0, kS = 4πDRs, versus the decay length rd. The rd values
(state points) for which we discussed the density profiles
are indicated by crosses. In panel (a), we show results for a
repulsive barrier (U1 = 3 kBT), as before, for various system

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.8.192 On: Fri, 07 Oct

2016 09:52:18



081102-4 Kolb, Angioletti-Uberti, and Dzubiella J. Chem. Phys. 144, 081102 (2016)

FIG. 3. The diffusion-controlled rate k vs. decay length rd for a repulsive
(panel (a), U1= 3 kBT ) and an attractive (panel (b), U1=−3 kBT ) fluctuat-
ing barrier for varying overall system size l = 2,5,10. Other parameters are
U0= 0 and g = 1. The reaction rate is normalized to the Smoluchowski rate
kS= 4πDRs of an ideal sink without barrier, cf. Eq. (2). Simple analytical
forms for the slow and fast limits30 are depicted in dashed and dotted lines,
respectively. State points of the density profiles at rd= 0.25, 2.5, and 250 in
Fig. 2 are marked by black crosses. Numerical results from BD simulations
are depicted by spherical symbols with their confidence intervals as error bars.

sizes l. In panel (b), we now also show results for an attractive
well (U1 = −3 kBT). As a striking result in all curves, we
observe that at a certain decay length comparable to the system
size rd ≃ 1–10, the reaction rate takes a maximum value. The
decay length at which the rate is maximized increases with
the system size l for both repulsive barriers and attractive
wells. (This happens as well with variation of g; variation of
U1 plays a minor role if U1 ≫ kBT .30) Selected numerical BD
solutions for l = 5, also plotted in Fig. 3, confirm this non-
monotonic behavior. We note that relatively simple equations
for the slow and fast limits, rd ≫ l and rd ≪ l, can be derived
analytically from the (quite involved) exact solution.30 They
are indicated by dashed and dotted lines in Fig. 3 and show
a rate increase for both limits when rd tends towards values
comparable to the system size. This is an analytical proof
that a maximum rate must occur in between. Analogously to

resonant activation,20–26 we can coin this yet unexplored, but
fundamental phenomenon, a resonant reaction in the field of
diffusion-limited molecular reactions.

We now turn to non-perfect sinks where the boundary
condition is not fully adsorbing but a surface reaction with
rate ksurf can take place according to Eq. (9). In this case, for
a non-fluctuating potential, the total reaction rate ktot is given
exactly by relationship Eq. (1). However, it turns out that this
standard additivity equation is not valid anymore in the case of
fluctuating barriers, if the time scale of the fluctuations is not
fast enough. We show this by using our framework to calculate
on one hand the diffusion rate over the fluctuating barrier for
a perfect sink, and then use Eq. (1) to combine it with ksurf
to obtain the total rate keff

tot. On the other hand, we directly
calculate the total rate by using the same framework and
correct boundary conditions (9) for non-perfect sinks to obtain
kbc

tot . For non-fluctuating potentials, these two procedures lead
exactly to the same result. A comparison for fluctuating
barriers is shown in Fig. 4. Here, large relative discrepancies
are observed when ksurf becomes comparable to the system
scales close to resonance, i.e., ksurf ≃ 1 and rd ≃ 1 (all in units
of Rs and D), which continuously grow and eventually saturate
for decreasing ksurf (see inset of Fig. 4). Note that the standard
law Eq. (1) is still valid in the fast limit (rd → 0) while not in
the slow limit (rd → ∞) which can be analytically proven.30

Our analysis demonstrates that diffusion, barrier crossing, and
surface reaction processes all dynamically interact and cannot
be decoupled in general, as assumed in Eq. (1). Hence, care
has to be taken in the interpretation of reaction rate processes
in fluctuating environments.

In summary, we have demonstrated the existence of the
phenomenon of resonance reaction in diffusion-influenced
reaction processes. For non-perfect sinks, we have also
shown that the standard reciprocal additivity of diffusion and
surface reaction rates is violated. The fundamental findings

FIG. 4. Comparison of the total reaction rate ktot of a non-perfect sink with a
finite surface reaction rate ksurf, either calculated by standard relation Eq. (1)
(keff

tot; dashed lines) or by the exact relation Eq. (9) (kbc
tot; solid lines). System

parameters are l = 5, g = 1, U0= 0 and U1= 3 kBT . The inset shows the
relative difference between approaches (9) and (1) versus ksurf at maximum
resonance.
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derived here could be helpful to interpret reaction rates in
complex reaction systems,7–19 as well as for the control
and optimization of association speeds in functional material
design. Although we have explored only symmetric fluctuation
in a two-state model, our framework can deal with asymmetric
switching rates between multiple states, greatly increasing the
complexity of the problem due to the introduction of a full
spectrum of fluctuation time scales.

The authors thank the Alexander von Humboldt (AvH)
Foundation and the Foundation of German Industries (SDW)
for financial support. J.D. acknowledges funding by the ERC
(European Research Council) Consolidator Grant with Project
No. 646659–NANOREACTOR.
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