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ABSTRACT

Proteins adsorbed from the blood plasma change nanoparticles inter-
actions with the surrounding biological environment. In general, the ad-
sorption of multiple proteins has a non-monotonic time dependence, that
is, proteins adsorbed at first may slowly be replaced by others. This “Vro-
man effect” leads to a highly dynamic protein corona on nanoparticles
that profoundly influences the immune response of the body. Thus, the
temporal evolution of the corona must be taken into account when consid-
ering applications of nanocarriers in, e.g., nanomedicine or drug delivery.
Up to now, the Vroman effect is explained solely in terms of diffusion:
Smaller proteins which diffuse faster are adsorbed first while larger ones,
having a stronger interaction with the surface, are preferred at equilib-
rium. Here we use dynamic density functional theory (DDFT) including
steric and electrostatic interactions to provide a full model for the tem-
poral evolution of the protein corona. In particular, we demonstrate that
proper consideration of all interactions leads to Vroman-like adsorption
signatures in widely different scenarios. Moreover, consideration of ener-
getic terms predicts both competitive as well as co-operative adsorption.
In this way, DDFT provides a reacher picture of the evolution of the
dynamic protein corona.
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1. Introduction

The kinetics of protein adsorption is a complex phenomenon whose understanding is
of fundamental importance for the development of various technologies, in particular,
nanomedicine applications such as biomedical devices, disease diagnosis, biosensing,
drug delivery, biofouling, and bioreactors [1–7]. Once placed into the multi-protein
mixture that constitutes the blood plasma, nanoparticles acquire a “protein-corona”
that fully coats them. This protein corona provides the true biological identity of
the nanoparticle, and controls the immune system response to its presence [8, 9].
As a matter of fact, various processes, e.g., targeting of cells via nanocarriers, are
strongly influenced by the protein corona [10–12]. Hence, it is clear that knowledge
of its composition as well as of its evolution with time is an important factor to
understand how these nanoparticles interact with the body.
Decades ago, Leo Vroman noted that the adsorption of a mixture of proteins to surfaces
displays a peculiar non-monotonicity in time [4, 13]. Indeed, proteins appearing in
the corona at earlier times are often replaced by other, typically larger ones when
equilibrium is ultimately achieved. This is a general effect, observed for both flat as
well as highly curved surfaces such as those encountered in nanoparticles. To explain
this observation, Vroman suggested it was based on the competition between kinetics
and thermodynamics: Smaller proteins diffuse faster to the surface but larger ones
have a stronger attraction to it and thus dominate at equilibrium. This simple picture,
based on ideal diffusion, still dominates the literature[4, 5, 14–16]. However, diffusion
of proteins towards a surface is far from ideal and depends on protein-protein mutual
interactions as well as the interaction between proteins and the adsorbing surface
[3, 17–21].

In this paper, we show that when energetic terms are accounted for, Vroman-like,
non-monotonic adsorption profiles can be observed under a wide variety of realistic sce-
narios. These results already strongly question the simple picture provided by Vroman
more than half a century ago. Furthermore, we show how a proper characterisation
of protein adsorption requires determining the full density profile and not just the
amount of proteins adsorbed, as the latter quantity can provide a description masking
the true, or better said application-relevant nature of the protein corona. Finally, we
also show that protein-protein and protein-nanoparticles interactions not only lead to
competitive protein adsorption but in certain scenarios also to cooperative phenom-
ena, where a protein can be more strongly adsorbed to the corona when other proteins
are present.

2. Theoretical model and methods

Our starting point is the use of dynamic density functional theory (DDFT) [22] to
study protein adsorption onto an idealized polymer-coated nanoparticle. We focus on
this system because compared to bare nanoparticles, coated ones are much more sta-
ble, have freedom in functionalization, and typically have lower toxicities[6, 7, 23–25],
and represent the most common type studied in nanomedicine applications.
DDFT can be seen as a generalized diffusion equation with an approximate account
of particle-particle correlations [22]. Its use to study protein adsorption has been pi-
oneered by Szleifer and his group [18–20], and is also referred to as the ”molecular
approach” to diffusion. Compared to the standard diffusion equation, which only con-
siders the Brownian motion of ideal (non-interacting) particles, DDFT also includes
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Figure 1. Left: Cartoon representation of our system. A hard-core PMMA nanoparticle (Orange) with radius
Rc = 60 nm is coated with a cross-linked polymer network of PNIPAM l = 90 nm thick (blue) with an interface

width of d = 10 nm (light orange). This nanoparticle is immersed in a protein solution (green and red spheres).
All nanoparticle dimensions are scaled with the correct size ratio, whereas proteins are represented at twice

their actual size. Right: The protein density fields for two protein types are represented as continuous, time-

dependent radial functions ρp(r, t) (red and green lines). Region A is the impenetrable hard-core region, B is
the hydrogel region where proteins can adsorb, and C the hydrogel-bulk interface region (see text).

the interactions within the system in a thermodynamically consistent way. For ex-
ample, comparisons of DDFT for hard sphere dynamics to particle-based Brownian
dynamics computer simulations for radial fluxes have shown excellent agreement for
the overdamped dynamics [26]. Our model is depicted in Fig. 1. The nanoparticle is
modeled by a core-shell particle of radius Rg with a solid core of radius Rc (region A
in Fig. 1) coated with a thin polymeric surface layer as, e.g., a cross-linked polymer
network (hydrogel) with full spherical symmetry. The core is impenetrable to proteins.
The surface layer (region B) is modeled as a penetrable continuum of width l, which
is charged due to the presence of ionisable groups. The presence of salt ions in solution
enforces overall charge neutrality, leading to a difference in the local electrostatic po-
tential described by the Donnan potential [27]. Since the polymer gel is homogeneous
in space, so are all its properties, e.g., the Donnan potential, or the local diffusion
coefficient. These properties decay from that of the gel to their value in the bulk solu-
tion within an interface width d of a few nanometers [17] (region C). This distance is
set equal to the average cross-linking distance typically found in the hydrogel (10 nm
in our simulations). The nanoparticle is immersed in a protein solution, modelled by
charged hard spheres of radius Rp, described via a continuous, time-dependent radial
density field ρp(r, t) with origin at the nanoparticle’s center-of-mass and p denotes the
protein type.
Within the equilibrium DFT framework, the following free-energy functional well de-
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scribes the free-energy of the protein distributions in our system[17]:

F =F [{ρp}] = F id + Fext + Fexc

= F id +
(
Fads + Felectro

)
+ Fexc

= F id + Fads + FBorn + FDon + Fexc

=
∑
p

∫
V
kBTρp (x)

[
ln

(
ρp (x)

ρ0

)
− 1

]
dx

+

∫
V
ρp (x)V ads

p (x) dx +

∫
V
ρp (x)V Born

p (x) dx

+

∫
V
zpρp (x)V Don [{ρp (x)}∗] dx

+

∫
V
ρp (x) εexc ({ρp (x)}) dx, (1)

where the sum is over all p protein species and the integral has to be read as a three-
dimensional integral over the whole volume V . In Eq. (1), ρ0 is a reference density,
whose exact value alone is irrelevant. However, the product ρ0 exp(βµeq

p ), µeq
p being

the equilibrium chemical potential in the bulk solution, is determined by mass con-
servation in the system, see [17] for a more detailed discussion. The asterisk in the
definition of V Don means that when calculating its contribution to the chemical po-
tential µp by taking the functional derivative, see Eq.(12), this should be done at a
fixed value of V Don to account for the charge-neutrality condition (see the SI for an
extended discussion).
Although we refer the reader to our previous publication [17] for details of the im-
plementation and for the solution of the relevant equations, for the sake of clarity we
also briefly discuss the origins of this functional here. The first term in Eq.(1), F id, is
the free-energy density for an ideal gas of particles, the second Fext = Fads + Felectro

describes the coupling between the protein density and an external potential. Follow-
ing the recipe in [17] this external potential is split into two contributions, one arising
from electrostatics, and one from a system-specific adsorption potential V ads that acts
in the gel region (r < Rg). For this term, we choose the simple form:

V ads
p (r) =S(r)∆Gads

p (2)

S(r) = [1− Fe(r,Rg, d)] . (3)

where ∆Gads
p is the constant intrinsic adsorption energy per protein and S a switch-

ing function, describing the change of environment from that of the bulk gel to that
of the bulk protein solution, where Fe(r, µ, α) = 1/(1 + exp[(r − µ)/α]) is the Fermi
function with inflection point at µ and width α, and r measures the distance from the
centre of the nanoparticle. In our model, we take α to be equal to the inter-
face region d = 10 nm, as defined in Fig. 1. The quantity ∆Gads

p compounds all
non-electrostatic interactions between proteins and the polymer coating into a single
parameter, and thus includes van-der-Waals attraction, hydrophobic and hydrophilic
interactions. In general, this term can be obtained by fitting titration calorimetry data
from protein adsorption experiments on mono-component protein solutions [25, 28].
The electrostatic term Felectro can be further split into two terms: one, FBorn describ-
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ing the changes in the electrostatic self- (Born) energy and the other, FDon , coming
from the Donnan potential, both dependent on the monopole charge zp of proteins of
type p, modeled as charged hard spheres [17, 28]. Their respective form is:

eβV Don (x) = Ṽ Don (x) = ln

[√
y (x)2 + 1 + y (x)

]
, with (4)

y (x) =

zgρ
c
g (x) +

∑
p
zpρp (x)

2 eρbulk
s

(5)

where ρcg (x) and zg are the number density of charged monomers (i.e., ρcg = fcρg (x),
where fc is the fraction of charged monomers and ρg the number density of gel’s
monomers) and the monomer charge, respectively. Correspondingly, ρbulk

s is the bulk
concentration of salt, e the elementary charge, and finally zp is the charge of a protein of
type p. As usual, β = 1/kBT where kB is Boltzmann’s constant and T is temperature.
The value of β is fixed to one, determining our unit for energies. Note that the latter
form for the Donnan potential, Eq. (5), is only valid for symmetric monovalent salt.
For the Born potential we have instead the form:

βV Born
p (x) =

z2
pλB

2σp

κ (x)σp
(1 + κ (x)σp)

(6)

κ (x) =
√

4πλBIlocal (x) (7)

=
√

4πλB
(
z2
gρ
c
g (x) + z2

sρs (x)
)

ρs (x) =ρbulk
s

(
e−Ṽ

Don(x)

+ eṼ
Don(x)

)
(8)

where λB = e2

4πε0εkBT
is the Bjerrum length (taken to be 0.7 nm in water at room tem-

perature), σp the radius of protein p and κ (x) is the position-dependent inverse screen-
ing length which depends on the local ionic strength Ilocal (x) =

[
z2
gρ
c
g (x) + z2

sρs (x)
]

due to the gel and salt ions. In Eq. (7), zg = −1 is the valency of the gel, whereas
zs = ±1 that for a monovalent salt. As for the adsorption energy, we assume the poly-
mer density ρg, and hence ρcg, to decay to zero with the functional form of Eq.(3). The
salt charge density instead is again dictated by local charge neutrality, consistently
with our previous choice of the Donnan potential to describe the electrostatic energy
in the system. At this point, it is important to make a comment about the
electrostatic part of our functional. A more exact treatment could use a
Coulomb functional, at least in a mean-field approximation [26], depending
explicitly on the charge density field of all ions in the system, not just pro-
teins. However, this would make studying the dynamics of the system much
more complicated and computationally expensive. Instead, we simplify our
description using a simple assumption. Considering that monoatomic salt
ions are much faster than proteins, we can consider the former to be always
in equilibrium w.r.t. the instantaneous position of the latter. Considering
a Poisson-Boltzmann description of electrostatics, this also means that on
length-scales larger than 1/κ the system can be taken to be electrostati-
cally neutral. As we show in a previous publication by some of us (Ref.[28],
Appendix A), this assumption leads exactly to the form of the Donnan
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and Born potential that we employ here, including the somewhat peculiar
form of a position-dependent inverse screening length depending on both
gel and salt ions. Importantly, the electroneutrality assumption (and thus
its consequences) are increasingly accurate the lower the protein density in
the polymer and the higher the salt concentration (i.e. for shorter screen-
ing lengths). Low loadings and relatively high salt-concentration, of the
kind found at physiological conditions and hence relevant for biomedical
applications, are the regime typically sampled in experiments of protein
adsorption on polymer-coated nano- and micro-particles, see e.g. Ref. [29].
Finally, the last term Fexc, typically called the “excess” free-energy, describes protein-
protein interactions. Within our description, these are purely steric in nature and we
approximate them within the B2 approximation to the hard-sphere interaction within
the local density approximation (LDA)[30]. For the packing densities encountered in
our system, use of this approximation compared to the full Carnahan-Starling hard
sphere functional does not lead to any appreciable difference. Explicitly, this choice
results in the following expression:

Fexc =
∑
p

∫
V
εexc({ρp (x)})ρp (x) dx

= kBT
∑
i,j

Bij
2

∫
V
ρi (x) ρj (x) dx, (9)

where the indices i and j run over all protein types in the system. To keep the model
as simple as possible, we treat protein as spherical, for which a reasonable value for
B2 is that for hard-spheres of the same mean size [28], giving:

Bij
2 =

2π

3

(
σi + σj

2

)3

(10)

where σi (σj) is the effective hard-core diameter of protein i(j). In order to account
also for polymer-protein excluded volume interactions, one should in principle include
in the sum in Eq.(9) one term depending on the polymer density ρg. We treat instead
the polymer as a fixed effective excluded volume zone and scale all protein densities
ρp in Eq.(9) using the following formula:

ρp(x)→ ξ (x) ρi(x) =

(
1

1− ρg (x) vmono

)
ρp(x), (11)

where vmono is the effective volume of a monomer, approximately 0.3 nm3 in our
system [28]. In this way, an increase of the number density of proteins of approximately
8% is observed in the gel, whereas no scaling occurs outside of it.
Although highly simplified, the use of this particular splitting of the free-energy to
describe protein kinetics and thermodynamics has been validated by comparison with
experimental data on both single and multi-component protein mixtures [17, 28, 29],
with which semi-quantitative agreement was found. Finally, the dynamics of the system
is obtained using Eq.(1) together with the following relations:
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µp =
δF [{ρp}]
δρp

, (12)

and

∂ρp
∂t

= ∇ ·Dp

[
βµid

p + βµexc
p

]
= ∇ ·Dp∇ρp +∇ ·Dpρp∇βµexc

p , (13)

Eq.(12) expresses the chemical potential µp of species p as a functional derivative
of the free-energy functional, as in classical DFT [31]. Eq. (13) instead is simply a
generalized diffusion equation for interacting systems [22]. The individual protein dif-
fusion constants are defined by Dp. We solve Eq. (13) numerically within a cell model,
using reflective boundary conditions to enforce number conservation in the system. An
extensive and more complete description of all the energy terms and their derivation,
as well as the numerical details and techniques used to solve these equations can be
found in Ref. [17]. Using this numerical model, we investigate the simplest yet repre-
sentative protein mixture, comprising two components only, which will be referred to
as type 1 and type 2, that is p = 1, 2.

3. Results and Discussion

The values of the parameters entering our dynamical equations for different cases
are summarised in Table 1. These parameters are taken within the range typically
measured for different proteins at various values of pH and salt concentration [28, 29].

zp (e)
∆Gads

p

(kBT )

Dp

(nm2/ns)
ρbulk
p

(10−4M)

a) “Classical”
Vroman

0 / 0 -1 / -4 0.05 / 0.02 2 / 2

b) “Density”
Vroman

0 / 0 -2/-5 0.03 / 0.03 3 / 1

c) “Charge”
Vroman

2/7 0/0 0.1/0.05 2/2

d) “Mixed”
Vroman

3 / 2 0/-3 0.05 / 0.05 2 / 2

“Co-Adsorption” 4 / -3 -2 / -5 0.1 / 0.1 2 / 2

Table 1. Values of the different parameters used in the calculation of Figure 2 (protein type 1 / protein type

2). Bold characters are used to highlight the specific parameters differing between the two protein types.
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Figure 2. Non-monotonic adsorption profiles arising from different mechanisms (parameters for the simu-
lations in Table 1). For each protein type, we report the amount of protein adsorbed, normalised by their

equilibrium value. Time is normalised by the maximum simulation time considered, tmax, at which point the
system was always found to have reached equilibrium. a) “Classical” Vroman mechanism, where faster protein

adsorb first but are then (partially) replaced by more stable ones b) “Density” Vroman, where proteins have

the same diffusion coefficient, but different bulk densities and adsorption energy. c) “Charge” Vroman, where
one protein has higher diffusion coefficient, but lower charge and d) “Mixed” Vroman, where proteins differ by

both their adsorption energy and their charge. In all these cases, competition between different forces lead to

a non-monotonic adsorption profile.

In Figure 2, for each protein type we report the number of adsorbed proteins as
a function of time Nads(t), divided by the value attained at equilibrium, Nequi ≡
Nads(∞). Formally:

Nads(t) = 4π

∫ Rg+d

Rc

ρp(r, t)r
2dr, (14)

where r is the distance from the nanoparticle centre, i.e. the adsorbed amount as a
function of time, normalised by the adsorbed amount at equilibrium, for four different
scenarios. This quantity can be simply calculated by integrating the time-dependent
protein density profile inside the gel (i.e. in the interval [0-100] nm from the hard core
of the nanoparticle, see Figs. 1,3 and 4) generated by solving the DDFT equations,
Eq.(13). In each case, we normalise the time by the maximum simulation time con-
sidered, at which point the system was found to have practically reached equilibrium.
Each of the presented cases arises from a representative combination of values for the
proteins’ charge zp, diffusion coefficient Dp, specific adsorption energy ∆Gads

p and bulk

density ρbulk
p . Note that this latter quantity, although it does not appear explicitly in

the equation describing the density field evolution, Eq. 13, is related to the initial
density profile at time zero due to number conservation, see [17] for details. An im-
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mediate observation is that all the profiles are qualitatively very similar, despite the
fact that the driving forces, as we are about to describe, are quite different for each
scenario. We now turn to analyse these cases in more detail. In doing this, we shall
also use as a reference Fig. 3 and Fig. 4, where the density profiles and the different
terms in the free-energy functional arising from them are plotted for each scenario.
For illustrative purposes these profiles are taken at two distinct time points, corre-
sponding roughly to the beginning of the simulation and the time (typically around
t = 0.1 tmax) where protein 1 starts to desorb from the gel. Fig. 2a) describes the
“classical” Vroman effect, which our model is indeed able to reproduce. Two proteins
with different size, and hence diffusion coefficient, and different specific adsorption
energies compete for binding. Indeed, the classical non-monotonic adsorption profile
is observed for the smaller (i.e., faster) protein (red line), which is partially replaced
at longer times by the more stable one, favoured by a larger adsorption energy ∆Gads

p ,
as expected at equilibrium. It should be noticed in this regard that this exchange is
driven by steric effects enforced by the protein packing penalty included in our DDFT
treatment. In absence of any charge, excluded volume interactions are in fact the only
term coupling the two protein densities, hence without it each protein would simply
adsorb independently.
Fig. 2b) presents a different scenario, the competition between two proteins with the
same diffusion coefficient, but differing for their bulk concentration and specific ad-
sorption energy. In this regard, it should be noticed that even for spherical proteins
with the same diffusion coefficient, and hence the same size due to Einstein’s rela-
tion [32], the specific adsorption energy must not be the same, since only the van der
Waals contribution should scale with volume but other contributions to ∆Gads

p , e.g.
hydrophobic interactions or salt-bridges, do not. Keeping this aspect in mind, let us
again describe what we observe in this scenario. The more concentrated protein, type
1, has a faster initial adsorption but again after reaching a certain maximum value
it starts to desorb from the gel, replaced by the one with lower ∆Gads

p . This replace-
ment occurs because of the initial overshooting in the adsorption of protein 1, which
violates the equilibrium condition ρ1/ρ2 = exp

[
β(∆Gads

2 −∆Gads
1 )
]
, where suffixes

indicate the protein type. The faster initial adsorption depends on the higher driving
force due to a larger density gradient between the bulk solution and the nanoparticle
(only slightly visible in the plot of Fig. 3 because of the scale). Surprisingly, this effect
has been overlooked in various discussions on protein adsorption kinetics. In fact, it is
not even included in the classical explanation of the Vroman effect, although the con-
centration of proteins in the blood plasma can differ by orders of magnitude. However,
this effect must be expected because different bulk densities generate different density
gradients, to which the ideal contribution to the driving force is proportional to. As
this gradient relaxes upon adsorption, the (ideal) driving force decreases, and indeed
by the time a peak is reached it is even opposing diffusion towards the nanoparticle.
Instead, the contribution coming from the specific adsorption energy remains constant
and always drives adsorption inside the gel. It is exactly this difference in the time-
dependence of the driving force that allows the more stable protein to take over if
its equilibrium concentration within the nanoparticle polymer coating is favoured by
thermodynamics, as we indeed show here.
The previous two examples do not consider any possible electrostatic effect, and the
coupling between the diffusion of the two protein is purely due to their excluded
volume. For charged systems, however, the overall charge-neutrality condition inside
the gel provides an additional parameter connecting them. For proteins of the same
charge (and both opposite to that of the gel), competition for adsorption determines a
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Vroman-like profile, see Fig. 2c). In this case, we consider two protein types with the
same bulk concentration and no contributions from the specific adsorption energy, al-
though type 1 has a higher diffusion coefficient and a smaller charge compared to type
2. In this case, the replacement of type 1 proteins at larger times can be attributed
to a complex competition between global electrostatics, entropy and packing effects.
Initially, when proteins adsorb they reduce their concentration gradient with respect
to the bulk, i.e., they gain translational entropy. As in the previous two cases, this
favours adsorption, with a driving force which is proportional to the protein diffusion
coefficient and hence favours a faster adsorption of protein 1. This ideal contribution
decreases with time, and in fact is reversed when the density inside the gel is higher
than that in the bulk, see Fig. 4c). At this point, further adsorption requires in our
case gaining electrostatic energy. This occurs for both proteins as long as the gel plus
protein system is overall neutral (remember the gel is positively charged, whereas the
proteins are negatively charged). However, when charge neutrality is achieved it is still
possible for the system to lower its free-energy by trading the electrostatic energy of
one specie with translational free-energy or, better said, the ideal entropy contribution.
In fact, it should be noticed that a protein of higher charge can replace many pro-
teins with smaller ones without changing the overall electrostatic energy, but with an
entropy gain due to smoother concentration gradients. In other words, more proteins
are free to move in the bulk solution rather than in the restricted region of the gel.
Furthermore, this replacement also reduces the overall protein-protein interaction, i.e.,
the packing (free-)energy, since a smaller number of proteins is required in the core to
compensate its charge. Overall, in our system this mechanism leads to a replacement
of protein 1 with protein 2.
In order to show the complexity of protein adsorption even considering a highly sim-
plified model like ours, we finally present in Fig. 2d) an intermediate case between a)
and c), whereby the two protein types differ only by their adsorption energy and the
charge. The first favours adsorption of type 2, whereas the second that of type 1. In
this case, the initial faster adsorption of protein 1 is due to the fact that its higher
charge compensates for the smaller gradient in adsorption energy. However, and this
is crucial, whereas the gradient in the adsorption energy is constant in time, the elec-
trostatic driving force diminishes as the polymer coating is gradually neutralized by
the adsorbing proteins. Hence at some point type 1 slows down, and successive re-
placement is due to a balance between loss of entropy and increase of packing energy
(at fixed electrostatic energy) and gain in specific adsorption energy.
Up to this point, we have discussed the Vroman effect analysing the total amount of
protein adsorbed in the gel. However, it is arguable that the biological response to the
protein corona does not depend on its overall composition, but rather only on that
of its “skin”, the part effectively exposed to the external environment. Consider for
example a cell of the immune system “probing” a nanoparticle by binding to a protein
on the nanoparticle’s corona. Clearly, in this process only the outer layer is accessible,
whereas most of the proteins in the corona will be masked. Whether or not this aspect
makes any practical difference depends on spatial density gradients of the protein field
in the gel. In this regard, the DDFT formalism is particularly useful, if not crucial.
In fact, widely employed theoretical models based on ordinary differential equations
only describe the total amount of protein adsorbed [33], but not their spatial profile,
and thus would miss any effect due to density inhomogeneities. Instead, having access
to the full protein spatial profile allows us to quantify them. This is shown in Fig. 5,
where we compare the overall amount adsorbed in the whole gel to that in the outer
layer only, defined here as the d = 10 nm transition region (“skin”) between the gel
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and the bulk, see Fig 1 for reference. More precisely, we report the relative fraction χp
for each specific proteins in the two regions, whose definition is:

χskin
p =

∫ Rg+d
Rg

ρp(r, t)r
2dr∑

p′
∫ Rg+d
Rg

ρp′(r, t)r2dr
, χgel

p =

∫ Rg+d
Rc

ρp(r, t)r
2dr∑

p′
∫ Rg+d
Rc

ρp′(r, t)r2dr
, (15)

Although in both cases one still clearly sees the typical signature of the Vroman ef-
fect, the replacement of one protein type with another, the extent of this phenomenon
depends on which of the two distinct (albeit spatially overlapping) regions is being
considered. For example, such replacement is markedly stronger for the “charge” Vro-
man case, panel c), then in others. Moreover, the composition of the protein corona in
the gel compared to its outmost layer can differ qualitatively and not only quantita-
tively. In fact the majority component (i.e. that for which χp > 0.5) is not even always
the same in the two regions. For example, whereas for the “classic” - panel a) - and
“charge” - panel c) - scenarios the majority component is the same for both regions,
the opposite is true for the “density” -panel b) - and “mixed” - panel d) - cases. Con-
sideration of these differences should be given the proper importance in the analysis
of experimental data as well as in their interpretation, especially when considering the
biological effects of the protein corona.

The previous examples clearly show that different combinations of the various forces
driving protein adsorption can generate competitive effects resulting in very similar
non-monotonic profiles as those typically attributed to the “classical” Vroman mech-
anism. As discussed, understanding these effects requires consideration of the time-
dependent balance of different energetic terms. This balance, which depends strongly
on the protein mixture considered, can lead to other phenomena besides the Vroman
effect. In fact, whereas the latter is due to a competition between different proteins,
cooperative phenomena, namely co-adsorption, can also occur. This is well illustrated
in Fig. 6, where we report the absolute number of protein adsorbed, Nads(t) in equation
(14), for a scenario where proteins have different charges. More precisely, we consider
a case where type 2 proteins have a charge of the same sign as that of the polymer and
are thus repelled by it. In this case, adsorption in the mono-component mixture is due
mainly to a balance between ∆Gads

p , favouring adsorption, and electrostatic energy.
The latter still favours adsorption for type 1 but opposes it for type 2. Hence, in the
single-protein solution, a very small amount of type 2 is adsorbed. However, when the
two types are mixed, the amount of type 2 adsorbed is two orders of magnitude larger
than in the mono-component case. This is not due to any direct attraction between
the two protein types because due to their hard core the overall protein-protein inter-
action in our model is repulsive. What happens instead is that the adsorption of type
1 in the polymer layer reduces the local electrostatic potential, and hence the repulsive
force felt by type 2. The overall result is an almost two orders of magnitude increase
in the adsorption of type 2, hence the term co-adsorption. In this regard, we note that
although we use the same term, what we describe is a rather different mechanism from
that observed by Vilaseca, Dawson and Franzese in their Molecular Dynamics simu-
lations of protein adsorption on bare surfaces [21]. In their case, co-operative effects
arise indirectly because of excluded volume contributions and the fact that two protein
types actually compete with a third one. Hence when one of the two displaces their
common competitor the second one is also allowed to adsorb. In our case, excluded
volume effects at the packing fractions we reach are irrelevant, and co-operation can
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be attributed only to electrostatic coupling. In the future, it would be interesting to
test if our more coarse-grained approach can also capture such 3-types packing effects.

4. Conclusions

In this paper, we have used DDFT to model adsorption in a bi-component mixture of
proteins onto a polymer-coated nanoparticle. We have shown that a correct interpre-
tation of the typical non-monotonic adsorption profiles observed in experiments, the
Vroman effect, requires full consideration of the different thermodynamic interactions
within the system. In particular, we have shown how completely different mechanisms,
physically rationalized by the competition between adsorption energy, electrostatics,
and translational and packing entropy, all lead to similar fingerprints. Furthermore,
we have shown that a more complete description of this phenomenon requires access
to the full spatial density profile of the protein field and not only information of the
overall amount adsorbed, as the latter quantity can hide features important to under-
stand the interaction of the protein corona with the biological environment. Finally,
we have also shown how inclusion of inter-particle interactions, even at the coarser
level of a DDFT description, can lead to the prediction not only of competitive, but
also cooperative adsorption, another aspect of clear experimental relevance. In light
of these results, design rules to prevent protein adsorption extrapolated from exper-
iments using a single protein type should also be carefully re-assessed [34, 35], since
a protein mixture can generate new physics that would not be observed otherwise.
Indeed, this might be one of the main reasons why polymer coatings developed to
prevent protein adsorption have failed to perform in real-life applications as well as
they did in controlled experiments [2]. Finally, we point out that reality can be even
more complex than what we described here when multipolar interactions are included,
e.g., protein dipoles interacting with local electrostatic fields [36].
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[23] C. Röcker, M. Ptzl, F. Zhang, W.J. Parak and G.U. Nienhaus, Nature Nanotechnology

4, 577–580 (2009).
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Figure 3. Density field ρp (left panels) and contributions to the potential µxp (centre and right panels) for the
two protein types P1and P2, respectively, under the different scenarios simulated, see Table 1. Data are shown
at two different time-points, corresponding roughly to the initial time (top panels) and to a time tinv ≡ 0.1 tmax

(bottom panels), where the Vroman effect typically occurs, tmax being the maximum simulated time, at which

equilibrium is observed. For reference, the dashed vertical black line is at r = Rg, at the boundary of the
polymer gel.
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Figure 4. As in Figure 3, but for the “Charge Vroman” and “Mixed Vroman” scenario, see Table 1 for

reference
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Figure 5. Comparison of the overall composition of the adsorbed proteins χgel
p vs the composition of the

outmost layer χskin
p of the protein corona, see Eq.(15). Panels are labelled according to the description reported

in Table 1. Although the typical signature of the Vroman effect, a replacement of one protein type with
another, can be clearly seen in both cases, this replacement is not the same considering the two different

(albeit overlapping) regions.
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Figure 6. Total number of adsorbed proteins Nads, see Eq.(14) in a bi-component solution (circles and square
for protein 1 and 2, respectively ) compared to the case when a single type, with the same amount, is present in

solution (diamonds and triangles). Whereas the adsorption profile is very similar to that of protein 1, adsorption

of protein 2 increases by almost two orders of magnitude in the bi-component mixture, due to synergistic effects
brought by global electrostatic interactions.
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