115 research outputs found

    Stellar neutron capture cross sections of ⁴¹K and ⁴⁵Sc

    Get PDF
    The neutron capture cross sections of light nuclei (

    Neutron activation of natural zinc samples at kT = 25 keV

    Full text link
    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT = 25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,g)65Zn cross section and for the partial cross section 68Zn(n,g)69Zn-m feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,g)71Zn-m and 70Zn(n,g)71Zn-g, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the beta-decay half-life of 71Zn-m could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars

    Neutron Capture Cross Sections for the Weak s Process

    Full text link
    In past decades a lot of progress has been made towards understanding the main s-process component that takes place in thermally pulsing Asymptotic Giant Branch (AGB) stars. During this process about half of the heavy elements, mainly between 90<=A<=209 are synthesized. Improvements were made in stellar modeling as well as in measuring relevant nuclear data for a better description of the main s process. The weak s process, which contributes to the production of lighter nuclei in the mass range 56<=A<=90 operates in massive stars (M>=8Msolar) and is much less understood. A better characterization of the weak s component would help disentangle the various contributions to element production in this region. For this purpose, a series of measurements of neutron-capture cross sections have been performed on medium-mass nuclei at the 3.7-MV Van de Graaff accelerator at FZK using the activation method. Also, neutron captures on abundant light elements with A<56 play an important role for s-process nucleosynthesis, since they act as neutron poisons and affect the stellar neutron balance. New results are presented for the (n,g) cross sections of 41K and 45Sc, and revisions are reported for a number of cross sections based on improved spectroscopic information

    Stellar (n,γ) cross sections of ²³Na

    Get PDF
    The cross section of the ²³Na(n,γ)²⁴Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at kT = 5.1 and 25 keV produced via the ¹⁸O(p,n)¹⁸F and ⁷Li(p,n)⁷Be reactions, respectively. The derived capture cross sections (σ)kT=5keV = 9.1 ± 0.3mb and (σ)kT=25keV = 2.03 ± 0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first ²³Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s-process nucleosynthesis are discussed

    Stellar neutron capture cross sections of ²⁰ ²¹ ²²Ne

    Get PDF
    The stellar (n,γ) cross sections of the Ne isotopes are important for a number of astrophysical quests, i.e., for the interpretation of abundance patterns in presolar material or with respect to the s-process neutron balance in red giant stars. This paper presents resonance studies of experimental data in the keV range, which had not been fully analyzed before. The analyses were carried out with the R-matrix code sammy. With these results for the resonant part and by adding the components due to direct radiative capture, improved Maxwellian-averaged cross sections (MACS) could be determined. At kT=30keV thermal energy we obtain MACS values of 240±29,1263±160, and 53.2±2.7 μbarn for ²⁰Ne,²¹Ne, and ²²Ne, respectively. In earlier work the stellar rates of ²⁰Ne and ²¹Ne had been grossly overestimated. ²²Ne and ²⁰Ne are significant neutron poisons for the s process in stars because their very small MACS values are compensated by their large abundances

    Structure of 10N in 9C+p resonance scattering

    Full text link
    The structure of exotic nucleus 10N was studied using 9C+p resonance scattering. Two L=0 resonances were found to be the lowest states in 10N. The ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2- or 1- spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.

    Proton Capture on ^{17}O and its astrophysical implications

    Full text link
    The reaction 17^{17}O(p,γ)18(p,\gamma)^{18}F influences hydrogen-burning nucleosynthesis in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars and classical novae. In the relevant temperature range for these environments (T9=0.010.4),themaincontributionstotherateofthisreactionarethedirectcaptureprocess,twolowlyingnarrowresonances(T_{9}=0.01-0.4), the main contributions to the rate of this reaction are the direct capture process, two low lying narrow resonances (E_{r}=65.1and183keV)andthelowenergytailsoftwobroadresonances( and 183 keV) and the low-energy tails of two broad resonances (E_{r}=557and677keV).Previousmeasurementsandcalculationsgivecontradictoryresultsforthedirectcapturecontributionwhichinturnincreasestheuncertaintyofthereactionrate.Inaddition,veryfewpublishedcrosssectiondataexistforthehighenergyregionthatmightaffecttheinterpretationofthedirectcaptureandthecontributionsofthebroadresonancesinthelowerenergyrange.Thisworkaimstoaddresstheseissues.Thereactioncrosssectionwasmeasuredinawideprotonenergyrange( and 677 keV). Previous measurements and calculations give contradictory results for the direct capture contribution which in turn increases the uncertainty of the reaction rate. In addition, very few published cross section data exist for the high energy region that might affect the interpretation of the direct capture and the contributions of the broad resonances in the lower energy range. This work aims to address these issues. The reaction cross section was measured in a wide proton energy range (E_{c.m.}=3451700keV)andatseveralangles( - 1700 keV) and at several angles (\theta_{lab}=0^{\circ},45^{\circ},90^{\circ},135^{\circ}).Theobservedprimary). The observed primary \gammatransitionswereusedasinputinan-transitions were used as input in an Rmatrixcodeinordertoobtainthecontributionofthedirectcaptureandthetwobroadresonancestothelowenergyregion.TheextrapolatedSfactorfromthepresentdataisingoodagreementwiththeexistingliteraturedatainthelowenergyregion.AnewreactionratewascalculatedfromthecombinedresultsofthisworkandliteratureSfactordeterminations.Resonancestrengthsandbranchingsarereportedforseveral-matrix code in order to obtain the contribution of the direct capture and the two broad resonances to the low-energy region. The extrapolated S-factor from the present data is in good agreement with the existing literature data in the low-energy region. A new reaction rate was calculated from the combined results of this work and literature S-factor determinations. Resonance strengths and branchings are reported for several ^{18}Fstates.WewereabletoextrapolatetheastrophysicalSfactorofthereactionF states. We were able to extrapolate the astrophysical S-factor of the reaction ^{17}OO(p,\gamma)^{18}$F at low energies from cross section data taken at higher energies. No significant changes in the nucleosynthesis are expected from the newly calculated reaction rate.Comment: Accepted in Physical Review

    Opportunities for Nuclear Astrophysics at FRANZ

    Full text link
    The "Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum" (FRANZ), which is currently under development, will be the strongest neutron source in the astrophysically interesting energy region in the world. It will be about three orders of magnitude more intense than the well-established neutron source at the Research Center Karlsruhe (FZK)

    Nuclear structure beyond the neutron drip line: the lowest energy states in 9^9He via their T=5/2 isobaric analogs in 9^9Li

    Get PDF
    The level structure of the very neutron rich and unbound 9^9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9^9He states exist with spins Jπ=1/2+J^\pi=1/2^+ and Jπ=1/2J^\pi=1/2^- and widths on the order of hundreds of keV. These findings cannot be reconciled with our contemporary understanding of nuclear structure. The present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8^8He+n+n system, performed via a search for the T=5/2 isobaric analog states in 9^9Li populated through 8^8He+p elastic scattering. The present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ=1/2+J^{\pi}=1/2^+ state in 9^9He located approximately 3 MeV above the neutron decay threshold

    Cross section measurement of N 14 ( p , γ ) O 15 in the CNO cycle

    Get PDF
    Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest.Purpose: The total cross section of the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction has large contributions from the transitions to the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4pt}{0ex}}\mathrm{MeV} excited state and the ground state of 15O^{15}\mathrm{O}. The Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4pt}{0ex}}\mathrm{MeV} transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation.Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from Ep=0.7{E}_{p}=0.7 to 3.6 MeV for both the ground state and the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} transitions at {\ensuremath{\theta}}_{\text{lab}}={0}^{\ensuremath{\circ}}, {45}^{\ensuremath{\circ}}, {90}^{\ensuremath{\circ}}, {135}^{\ensuremath{\circ}}, and {150}^{\ensuremath{\circ}}. Both TiN and implanted-14N^{14}\mathrm{N} targets were utilized. \ensuremath{\gamma} rays were detected by using an array of high-purity germanium detectors.Results: The excitation function as well as angular distributions of the two transitions were measured. A multichannel RR-matrix analysis was performed with the present data and is compared with previous measurements. The analysis covers a wide energy range so that the contributions from broad resonances and direct capture can be better constrained.Conclusion: The astrophysical SS factors of the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} and the ground-state transitions were extrapolated to low energies with the newly measured differential-cross-section data. Based on the present work, the extrapolations yield {S}_{6.79}(0)=1.29\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.09(\mathrm{syst})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} and {S}_{\text{g.s.}}(0)=0.42\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b}. While significant improvement and consistency is found in modeling the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} transition, large inconsistencies in both the RR-matrix fitting and the low-energy data are reaffirmed for the ground-state transition. Reflecting this, a systematic uncertainty of {}_{\ensuremath{-}0.19}^{+0.09}\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} is recommended for the ground-state transition
    corecore