9 research outputs found

    Sex-partitioning of the <i>Plasmodium falciparum</i> stage V gametocyte proteome provides insight into <i>falciparum</i>-specific cell biology

    Get PDF
    One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates

    Restoration of energy homeostasis by SIRT6 extends healthy lifespan

    Get PDF
    Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging

    Identification of cardiac myofilament protein isoforms using multiple mass spectrometry based approaches

    No full text
    Item does not contain fulltextPURPOSE: The identification of protein isoforms in complex biological samples is challenging. We, therefore, used an MS approach to unambiguously identify cardiac myofilament protein isoforms based on the observation of a tryptic peptide consisting of a sequence unique to a particular isoform. EXPERIMENTAL DESIGN: Three different workflows were used to isolate and fractionate rat cardiac myofilament subproteomes. All fractions were analyzed on an LTQ-Orbitrap MS, proteins were identified using various search engines (MASCOT, X!Tandem, X!Tandem Kscore, and OMSSA) with results combined via PepArML Meta-Search engine, and a postsearch analysis was performed by MASPECTRAS. All MS data have been deposited in the ProteomeXchange with identifier PXD000874 (http://proteomecentral.proteomexchange.org/dataset/PXD000874). RESULTS: The combination of multiple workflows and search engines resulted in a larger number of nonredundant proteins identified than with individual methods. A total of 102 myofilament annotated proteins were observed overlapping in two or three of the workflows. Literature search for myofilament presence with manual validation of the MS spectra was carried out for unambiguous identification: ten cardiac myofilament and 17 cardiac myofilament-associated proteins were identified with 39 isoforms and subisoforms. CONCLUSION AND CLINICAL RELEVANCE: We have identified multiple isoforms of myofilament proteins that are present in cardiac tissue using unique tryptic peptides. Changes in distribution of these protein isoforms under pathological conditions could ultimately allow for clinical diagnostics or as therapeutic targets

    Decoding Angiotensin Receptors: TOMAHAQ‐Based Detection and Quantification of Angiotensin Type‐1 and Type‐2 Receptors

    No full text
    Background The renin‐angiotensin system plays a crucial role in human physiology, and its main hormone, angiotensin, activates 2 G‐protein–coupled receptors, the angiotensin type‐1 and type‐2 receptors, in almost every organ. However, controversy exists about the location, distribution, and expression levels of these receptors. Concerns have been raised over the low sensitivity, low specificity, and large variability between lots of commercially available antibodies for angiotensin type‐1 and type‐2 receptors, which makes it difficult to reconciliate results of different studies. Here, we describe the first non–antibody‐based sensitive and specific targeted quantitative mass spectrometry assay for angiotensin receptors. Methods and Results Using a technique that allows targeted analysis of multiple peptides across multiple samples in a single mass spectrometry analysis, known as TOMAHAQ (triggered by offset, multiplexed, accurate mass, high resolution, and absolute quantification), we have identified and validated specific human tryptic peptides that permit identification and quantification of angiotensin type‐1 and type‐2 receptors in biological samples. Several peptide sequences are conserved in rodents, making these mass spectrometry assays amenable to both preclinical and clinical studies. We have used this method to quantify angiotensin type‐1 and type‐2 receptors in postmortem frontal cortex samples of older adults (n=28) with Alzheimer dementia. We correlated levels of angiotensin receptors to biomarkers classically linked to renin‐angiotensin system activation, including oxidative stress, inflammation, amyloid‐β load, and paired helical filament‐tau tangle burden. Conclusions These robust high‐throughput assays will not only catalyze novel mechanistic studies in the angiotensin research field but may also help to identify patients with an unbalanced angiotensin receptor distribution who would benefit from angiotensin receptor blocker treatment

    Naturally acquired immunity against immature Plasmodium falciparum gametocytes

    No full text
    The recent decline in global malaria burden has stimulated efforts toward Plasmodium falciparum elimination. Understanding the biology of malaria transmission stages may provide opportunities to reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, termed stages I to IV gametocytes, sequester in human bone marrow before release into the circulation as mature stage V gametocytes. This process likely involves interactions between host receptors and potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here, we developed a flow cytometry assay to examine immune recognition of live gametocytes of different developmental stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest immature gametocyte-iRBCs (giRBCs) but not mature stage V giRBCs. Candidate surface antigens (n = 30), most of them shared between asexual- and gametocyte-iRBCs, were identified by mass spectrometry and mouse immunizations, as well as correlations between responses by protein microarray and flow cytometry. Naturally acquired responses to a subset of candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples from malaria-infected individuals were able to induce immune clearance of giRBCs in vitro. Infected RBC surface expression of select candidate antigens was validated using specific antibodies, and genetic analysis revealed a subset with minimal variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and shared iRBC antigens are naturally acquired after malaria exposure. These humoral immune responses may have consequences for malaria transmission potential by clearing developing gametocytes, which could be leveraged for malaria intervention
    corecore