12 research outputs found

    Lensing effects on gravitational waves from compact binaries

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2020, Tutor: Oleg BulashenkoCompact binary systems, such as black holes or neutron stars, are known to emit gravitational waves as a result of energy loss while orbiting around their common center of mass. Ground-based detectors like LIGO and VIRGO have been able to detect such radiation as a "chirp" signal in the range of frequencies emitted by these compact systems. It is known that gravitational waves can experience gravitational lensing as they travel from the binary system to the observer and pass near massive objects on their way. This produces a distortion which could be encoded in the signal we detect. In this work we analyse wave effects on gravitational lensing of gravitational waves (like interference and diffraction) which are of possible importance in future detections by ground-based and/or space detector

    Compact Binaries through a Lens: Silent vs. Detectable Microlensing for the LIGO-Virgo-KAGRA Gravitational Wave Observatories

    Full text link
    Massive objects located between Earth and a compact binary merger can act as a magnifying glass improving the sensitivity of gravitational wave detectors to distant events. Depending on the parameters of the system, a point mass lens between the detector and the source can either lead to a smooth frequency-dependent amplification of the gravitational wave signal, or magnification combined with the appearance of a second image that interferes with the first creating a regular, predictable pattern. We map the increase in the signal to noise ratio for upcoming LVK observations as a function of the mass of the lens MLM_L and dimensionless source position yy for any point mass lens between the detector and the binary source. To quantify detectability, we compute the optimal match between the lensed waveform and the waveforms in the unlensed template bank. The higher the mismatch with unlensed templates, the more detectable lensing is. Furthermore, we estimate the probability of lensing, and find that the redshift to which binary mergers are visible with the LVK increases from z = 1 to about 3.2 for a total detected binary mass of 120 MM_\odot. The overall probability of lensing is <20%<20\% of all detectable events above the threshold SNR for 120M120 M_\odot and <5%<5\% for more common events with 60M60 M_\odot. We find that there is a selection bias for detectable lensing that favors events that are close to the line of sight y0.5y \lesssim 0.5. Black hole binary searches could thus improve their sensitivity by taking this bias into account. Moreover, the match, the SNR increase due to lensing, and the probability of lensing are only weakly dependent on the noise curve of the detector with very similar results for both the O3 and predicted O4 noise power spectral densities. These results are upper limits that assume all dark matter is composed of 300M300 M_\odot point mass lenses.Comment: 17 pages, 12 Figures. Updated References. Submitted to Phys. Rev.

    SPARC-mediated long-term retention of nab-paclitaxel in pediatric sarcomas

    Get PDF
    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein overexpressed by several cancers. Because SPARC shows high binding affinity to albumin, we reasoned that pediatric sarcoma xenografts expressing SPARC would show enhanced uptake and accumulation of nanoparticle albumin-bound (nab)-paclitaxel, a potent anticancer drug formulation. We first evaluated the expression of SPARC in patient-derived xenografts (PDXs) of Ewing sarcoma, rhabdomyosarcoma and osteosarcoma, finding variable SPARC gene expression that correlated well with SPARC protein measured by immunoblotting. We revealed that the activity of the fusion gene chimera EWSR1-FLI1, the genetic driver of Ewing sarcoma, leads to lower expression of the gene SPARC in these tumors, likely due to enriched acetylation marks of the histone H3 lysine 27 at regions including the SPARC promoter and potential enhancers. Then, we used SPARC-edited Ewing sarcoma cells (A673 line) to demonstrate that SPARC knocked down (KD) cells accumulated significantly less amount of nab-paclitaxel in vitro than SPARC wild type (WT) cells. In vivo, SPARC KD and SPARC WT subcutaneous xenografts in mice achieved similar maximum intratumoral concentrations of nab-paclitaxel, though drug clearance from SPARC WT tumors was significantly slower. We confirmed such SPARC-mediated long-term intratumoral accumulation of nab-paclitaxel in Ewing sarcoma PDX with high expression of SPARC, which accumulated significantly more nab-paclitaxel than SPARC-low PDX. SPARC-high PDX responded better to nab-paclitaxel than SPARC-low tumors, although these results should be taken cautiously, given that the PDXs were established from different patients that could have specific determinants predisposing response to paclitaxel. In addition, SPARC KD Ewing sarcoma xenografts responded better to soluble docetaxel and paclitaxel than to nab-paclitaxel, while SPARC WT ones showed similar response to soluble and albumin-carried drugs. Overall, our results show that pediatric sarcomas expressing SPARC accumulate nab-paclitaxel for longer periods of time, which could have clinical implications for chemotherapy efficacy.AMC acknowledges funding from AECC Scientific Foundation, MINECO (SAF2011-22660), European Union Seventh Framework Programme (FP7/2007-2013) under Marie Curie International Reintegration Grant (PIRG-08-GA-2010-276998) and ISCIII-FEDER (CP13/00189 and CPII18/00009). EDA, OMT and JM acknowledge support of AECC Scientific Foundation (GCB13131578). NU acknowledges funding by the Basque Government, Research Groups of the Basque University System (Project No. IT 1186-19). We thank support of the Central Service of Analysis in Alava, SGIker (UPV/EHU/ERDF, EU) and Xarxa de Bancs de Tumors de Catalunya (XBTC) sponsored by Pla Director d'Oncologia de Catalunya.Peer reviewe

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier

    No full text
    Treatment of retinoblastoma -a pediatric cancer of the developing retina- might benefit from strategies to inhibit the blood-retinal barrier (BRB). The potent anticancer agent topotecan is a substrate of efflux transporters BCRP and P-gp, which are expressed at the BRB to restrict vitreous and retinal distribution of xenobiotics. In this work we have studied vitreous and retinal distribution, tumor accumulation and antitumor activity of topotecan, using pantoprazole as inhibitor of BCRP and P-gp. We used rabbit and mouse eyes as BRB models and patient-derived xenografts as retinoblastoma models. To validate the rabbit BRB model we stained BCRP and P-gp in the retinal vessels. Using intravitreous microdialysis we showed that the penetration of the rabbit vitreous by lactone topotecan increased significantly upon concomitant administration of pantoprazole (P = 0.0285). Pantoprazole also increased topotecan penetration of the mouse vitreous, measured as the vitreous-to-plasma topotecan concentration ratio at the steady state (P = 0.0246). Pantoprazole increased topotecan antitumor efficacy and intracellular penetration in retinoblastoma in vitro, but did not enhance intratumor drug distribution and survival in mice bearing the intraocular human tumor HSJD-RBT-2. Anatomical differences with the clinical setting likely limited our in vivo study, since xenografts were poorly vascularized masses that loaded most of the vitreous compartment. We conclude that pharmacological modulation of the BRB is feasible, enhances anticancer drug distribution into the vitreous and might have clinical implications in retinoblastoma.Fil: Pascual-Pasto, Guillem. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Olaciregui, Nagore G.. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Opezzo, Javier A. W.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Castillo Ecija, Helena. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Cuadrado Vilanova, Maria. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Paco, Sonia. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Rivero, Ezequiel Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Vila Ubach, Monica. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Restrepo Perdomo, Camilo A.. Hospital Sant Joan de Deu Barcelona; EspañaFil: Torrebadell, Montserrat. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Suñol, Mariona. Hospital Sant Joan de Deu Barcelona; EspañaFil: Schaiquevich, Paula Susana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Mora, Jaume. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Bramuglia, Guillermo Federico. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; EspañaFil: Carcaboso, Angel M.. Hospital Sant Joan de Deu Barcelona; España. Institut de Recerca Sant Joan de Deu; Españ

    Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8

    Get PDF
    Neuroblastoma is a pediatric solid tumor with high expression of the tumor associated antigen disialoganglioside GD2. Despite initial response to induction therapy, nearly 50% of high-risk neuroblastomas recur because of chemoresistance. Here we encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated with the anti-GD2 mouse mAb 3F8 at a mean density of seven antibody molecules per NP. The accumulation of drug-loaded NPs targeted with 3F8 versus with control antibody was monitored by microdialysis in patient-derived GD2-expressing neuroblastoma xenografts. We showed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the targeted nano-drug delivery system when compared to non-targeted system or free drug. This selective penetration of the tumor extracellular fluid translated into a strong anti-tumor effect prolonging survival of mice bearing GD2-high neuroblastomas in vivo.Fil: Monterrubio, Carles. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Paco, Sonia. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Olaciregui, Nagore G.. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Pascual Pasto, Guillem. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Vila Ubach, Monica. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Cuadrado Vilanova, Maria. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Ferrandiz, M. Mar. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Castillo Ecija, Helena. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Glisoni, Romina Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Kuplennik, Nataliya. Technion-Israel Institute of Technology; IsraelFil: Jungbluth, Achim. Memorial Sloan-Kettering Cancer Center; Estados UnidosFil: de Torres, Carmen. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Lavarino, Cinzia. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Cheung, N. K. V.. Memorial Sloan-Kettering Cancer Center; Estados UnidosFil: Mora, Jaume. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; EspañaFil: Sosnik, Alejandro Dario. Technion-Israel Institute of Technology; IsraelFil: Montero Carcaboso, Angel. Institut de Recerca Sant Joan de Deu; España. Hospital Sant Joan de Deu Barcelona; Españ

    Treatment-driven selection of chemoresistant Ewing sarcoma tumors with limited drug distribution

    No full text
    Ewing sarcoma is a bone and soft tissue tumor predominantly affecting adolescents and young adults. To characterize changes in anticancer drug activity and intratumor drug distribution during the evolution of Ewing sarcomas, we used immunodeficient mice to establish pairs of patient-derived xenografts (PDX) at early (initial diagnosis) and late (relapse or refractory progression) stages of the disease from three patients. Analysis of copy number alterations (CNA) in early passage PDX tissues showed that two tumor pairs established from patients which responded initially to therapy and relapsed more than one year later displayed similar CNAs at early and late stages. For these two patients, PDX established from late tumors were more resistant to chemotherapy (irinotecan) than early counterparts. In contrast, the tumor pair established at refractory progression showed highly dissimilar CNA profiles, and the pattern of response to chemotherapy was discordant with those of relapsed cases. In mice receiving irinotecan infusions, the level of SN-38 (active metabolite of irinotecan) in the intracellular tumor compartment was reduced in tumors at later stages compared to earlier tumors for those pairs bearing similar CNAs, suggesting that distribution of anticancer drug shifted toward the extracellular compartment during clonal tumor evolution. Overexpression of the drug transporter P-glycoprotein in late tumor was likely responsible for this shift in drug distribution in one of the cases.The work at Hospital Sant Joan de Deu was supported by associations of parents and families of children with cancer. The work of EdA was supported by the AECC Scientific Foundation (GCB13-1578), ISCIII-FEDER (PI14/01466 and PI17/00464), CIBERONC (CB16/12/00361), Asociación Pablo Ugarte and Fundación María García Estrada. The work of JM was supported by the AECC Scientific Foundation (GCB13-1578) and Asociación Pablo Ugarte. The work of AMC was supported by grants from the AECC Scientific Foundation, MINECO (SAF2011-22660), Fundacion BBVA (152/2011), the European Union Seventh Framework Programme (FP7/2007-2013) under Marie Curie International Reintegration Grant (PIRG-08-GA-2010-276998) and ISCIII-FEDER (CP13/00189 and CPII18/00009)
    corecore