62 research outputs found

    HIV-1 Populations in Semen Arise through Multiple Mechanisms

    Get PDF
    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus

    Binding of Gold(III) with DNA

    No full text
    Metal ions1..10ions^{1..10} are known to bind to DNA. A number of metal ions have been studied and their binding established. Cu(II)8,9,10Cu(II)^{8,9,10} and Ag(I)4Ag(I)^4 have been widely studied and ample literature exists on these two metals. On the other hand, the interaction of DNA with gold(III) (which does not occur as Au3+Au^{3+} in solution, but rather exists in square planar complexes11complexes^{11}) has seldom been considered. During the course of our work on this phenomenon Gibson and coworkers12co-workers^{12} have published a paper recently reporting the results on binding of gold(III) with adenine nucleotides

    Interaction of palladium (II) with DNA

    No full text
    The nature of interaction of palladium(II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA

    Interaction of metal ions with nucleic acids and related compounds. II. Studies on Au(III)-nucleic acid system

    No full text
    The nature of interaction of Au(III) with nucleic acids was studied by using methods such as uv and ir spectrophotometry, viscometry, pH titrations, and melting-temperature measurements. Au(III) is found to interact slowly with nucleic acids over a period of several hours. The uv spectra of native calf-thymus DNA 9pH 5.6 acetate buffer containing (0.01M NaCIO4) showed a shift in λ max to high wavelengths and an increase in optical density at 260 nm. There was a fourfold decrease in viscosity (expressed as ηsp/c). The reaction was faster at pH 4.0 and also with denatured DNA (pH 5.6) and whole yeast RNA (pH 5.6). The order of preference of Au(III) (as deduced from the time of completion of reaction) for the nucleic acids in RNA > denatured DNA > DNA. The reaction was found to be completely reversible with respect KCN. Infrared spectra of DNA-Au(III) complexes showed binding to both the phosphate and bases of DNA. The same conclusions were also arrived at by melting-temperature studies of Au(III)-DNA system. pH titrations showed liberation of two hydroxylions at r = 0.12 [r = moles of HAuCl4 added per mole of DNA-(P)] and one hydrogen ion at r = 0.5. The probable binding sites could be N(1)/N(7) of adenine, N(7) and/or C(6)O of guanine, N(3) of cytosine and N(3) of thymine. DNAs differing in their (G = C)-contents [Clostridium perfingens DNA(G = C, 29%), salmon sperm DNA (G + C, 42%) and Micrococcus lysodeikticus DNA(G + C, 29%), salmon sperm DNA (G = C, 72%)] behaved differently toward Au(III). The hyperchromicity observed for DNAs differing in (G + C)-content and cyanide reversal titrations indicate selectivity toward ( A + T)-rich DNA at lw values of r. Chemical analysis and job's continuous variation studies indicated the existence of possible complexes above and below r = 1. The results indicate that Au(III) ions probably bind to hte phosphate group in the initial stages of the reaction, particularly at low values of r, and participation of the base interaction also increases. Cross-linking of the two strands by Au(III) may take place, but a complete collapse of the doulbe helix is not envisaged. It is probable that tilting of the bases or rotaiton of the bases around the glucosidic bond, resulting in a significant distrotion of the double helix, might take place due to binding of Au(III) to DNA

    Fluctuations of monsoon Activity

    No full text

    Inclusion of Pregnant and Breastfeeding Women in Research – Efforts and Initiatives

    No full text
    Pregnant and breastfeeding women have been rendered therapeutic orphans as they have been historically excluded from clinical trials. Labelling for most approved drugs does not provide information about safety and efficacy during pregnancy. This lack of data is mainly due to ethico‐legal challenges that have remained entrenched in the post‐diethylstilbestrol and thalidomide era, and that have led to pregnancy being viewed in the clinical trial setting primarily through a pharmacovigilance lens. Policy considerations that encourage and/or require the inclusion of pregnant or lactating women in clinical trials may address the current lack of available information. However, there are additional pragmatic strategies, such the employment of pharmacometric tools and the introduction of innovative clinical trial designs, which could improve knowledge about the safety and efficacy of medication use during pregnancy and lactation. This paper provides a broad overview of the pharmacoepidemiology of drugs used during pregnancy and lactation, and offers recommendations for regulators and researchers in academia and industry to increase the available pharmacokinetic and ‐dynamic understanding of medication use in pregnancy
    corecore