41 research outputs found
Recommended from our members
Synthesis and Assessment Product
This Synthesis and Assessment Product (SAP 2.4) focuses on the Climate models. Depletion of the stratospheric ozone layer by human-produced ozone-depleting substances has been recognized as a global environmental issue for more than three decades, and the international effort to address the issue via the United Nations Montreal Protocol marked its 20-year anniversary in 2007. Scientific understanding underpinned the Protocol at its inception and ever since. As scientific knowledge advanced and evolved, the Protocol evolved through amendment and adjustment. Policy-relevant science has documented the rise, and now the beginning decline, of the atmospheric abundances of many ozone-depleting substances in response to actions taken by the nations of the world. Projections are for a return of ozone-depleting chemicals (compounds containing chlorine and bromine) to their "pre-ozone-depletion" (pre-1980) levels by the middle of this century for the midlatitudes; the polar regions are expected to follow suit within 20 years after that. Since the 1980s, global ozone sustained a depletion of about 5 percent in the midlatitudes of both the Northern Hemisphere and Southern Hemisphere, where most of the Earth's population resides; it is now showing signs of turning the corner towards increasing ozone. The large seasonal depletions in the polar regions are likely to continue over the next decade but are expected to subside over the next few decades
Recommended from our members
Considerations for reducing food system energy demand while scaling up urban agriculture
There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and
interactions with other components of the foodâenergyâwater nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA.
Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently
robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs.
By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the opportunities for integrating the variety of UA structures and technologies, so that they are better able to exploit these urban waste flows and achieve whole-system reductions in energy demand. Any planning approach to implement these must, as always, assess how context will
influence the viability and value added from the promotion of UA