1,260 research outputs found

    Exciting Andreev pairs in a superconducting atomic contact

    Get PDF
    The Josephson effect describes the flow of supercurrent in a weak link, such as a tunnel junction, nanowire, or molecule, between two superconductors. It is the basis for a variety of circuits and devices, with applications ranging from medicine to quantum information. Currently, experiments using Josephson circuits that behave like artificial atoms are revolutionizing the way we probe and exploit the laws of quantum physics. Microscopically, the supercurrent is carried by Andreev pair states, which are localized at the weak link. These states come in doublets and have energies inside the superconducting gap. Existing Josephson circuits are based on properties of just the ground state of each doublet and so far the excited states have not been directly detected. Here we establish their existence through spectroscopic measurements of superconducting atomic contacts. The spectra, which depend on the atomic configuration and on the phase difference between the superconductors, are in complete agreement with theory. Andreev doublets could be exploited to encode information in novel types of superconducting qubits.Comment: Submitted to Natur

    Supercurrent Spectroscopy of Andreev States

    Full text link
    We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.Comment: typos correcte

    Theory of microwave spectroscopy of Andreev bound states with a Josephson junction

    Get PDF
    We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure

    Evidence for long-lived quasiparticles trapped in superconducting point contacts

    Get PDF
    We have observed that the supercurrent across phase-biased, highly transmitting atomic size contacts is strongly reduced within a broad phase interval around {\pi}. We attribute this effect to quasiparticle trapping in one of the discrete sub-gap Andreev bound states formed at the contact. Trapping occurs essentially when the Andreev energy is smaller than half the superconducting gap {\Delta}, a situation in which the lifetime of trapped quasiparticles is found to exceed 100 \mus. The origin of this sharp energy threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be published in Physical Review Letter

    Superconducting atomic contacts inductively coupled to a microwave resonator

    Get PDF
    We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.Comment: 14 pages, 10 figures, to appear in special issue on break-junctions in JOPC

    Dynamics of quasiparticle trapping in Andreev levels

    Get PDF
    We present a theory describing the trapping and untrapping of quasiparticles in the Andreev bound level of a single-channel weak link between two superconductors. We calculate the rates of the transitions between even and odd occupations of the Andreev level induced by absorption and emission of both photons and phonons. We apply the theory to a recent experiment [Phys. Rev. Lett. 106, 257003 (2011)] in which the dynamics of the trapping of quasiparticles in the Andreev levels of superconducting atomic contacts coupled to a Josephson junction was measured. We show that the plasma energy hνph\nu_p of the Josephson junction defines a rather abrupt transition between a fast relaxation regime dominated by coupling to photons and a slow relaxation regime dominated by coupling to phonons. With realistic parameters the theory provides a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review

    Diurnal variation of non-specular meteor trails

    Get PDF
    We present results of simulated radar observations of meteor trails in an effort to show how non-specular meteor trails are expected to vary as a function of a number of key atmospheric, ionospheric and meteoroid parameters. This paper identifies which geophysical sources effect the variability in non-specular trail radar observations, and provides an approach that uses some of these parameter dependencies to determine meteoroid and atmospheric properties based upon the radar meteor observations. The numerical model used follows meteor evolution from ablation and ionization to head echo plasma generation and through formation of field aligned irregularities (FAI). Our main finding is that non-specular meteor trail duration is highly sensitive to the presence of lower thermospheric winds or electric fields and the background ionospheric electron density. In an effort to make key predictions we present the first results of how the same meteoroid is expected to produce dramatically different meteor trails as a function of location and local time. For example, we show that mid-latitude trail durations are often shorter lasting than equatorial trail observations because of the difference in mid-latitude wind speed and equatorial drift speed. The simulated trails also account for observations showing that equatorial nighttime non-specular meteor trails last significantly longer and are observed more often than daytime trails

    Measurement of the current-phase relation of superconducting atomic contacts

    Get PDF
    We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter

    The New Meteor Radar at Penn State: Design and First Observations

    Get PDF
    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented
    corecore