1,260 research outputs found
Exciting Andreev pairs in a superconducting atomic contact
The Josephson effect describes the flow of supercurrent in a weak link, such
as a tunnel junction, nanowire, or molecule, between two superconductors. It is
the basis for a variety of circuits and devices, with applications ranging from
medicine to quantum information. Currently, experiments using Josephson
circuits that behave like artificial atoms are revolutionizing the way we probe
and exploit the laws of quantum physics. Microscopically, the supercurrent is
carried by Andreev pair states, which are localized at the weak link. These
states come in doublets and have energies inside the superconducting gap.
Existing Josephson circuits are based on properties of just the ground state of
each doublet and so far the excited states have not been directly detected.
Here we establish their existence through spectroscopic measurements of
superconducting atomic contacts. The spectra, which depend on the atomic
configuration and on the phase difference between the superconductors, are in
complete agreement with theory. Andreev doublets could be exploited to encode
information in novel types of superconducting qubits.Comment: Submitted to Natur
Supercurrent Spectroscopy of Andreev States
We measure the excitation spectrum of a superconducting atomic contact. In
addition to the usual continuum above the superconducting gap, the single
particle excitation spectrum contains discrete, spin-degenerate Andreev levels
inside the gap. Quasiparticle excitations are induced by a broadband on-chip
microwave source and detected by measuring changes in the supercurrent flowing
through the atomic contact. Since microwave photons excite quasiparticles in
pairs, two types of transitions are observed: Andreev transitions, which
consists of putting two quasiparticles in an Andreev level, and transitions to
odd states with a single quasiparticle in an Andreev level and the other one in
the continuum. In contrast to absorption spectroscopy, supercurrent
spectroscopy allows detection of long-lived odd states.Comment: typos correcte
Theory of microwave spectroscopy of Andreev bound states with a Josephson junction
We present a microscopic theory for the current through a tunnel Josephson
junction coupled to a non-linear environment, which consists of an Andreev
two-level system coupled to a harmonic oscillator. It models a recent
experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499,
312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting
atomic-size contact. We find the eigenenergies and eigenstates of the
environment and derive the current through the junction due to inelastic Cooper
pair tunneling. The current-voltage characteristic reveals the transitions
between the Andreev bound states, the excitation of the harmonic mode that
hybridizes with the Andreev bound states, as well as multi-photon processes.
The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure
Evidence for long-lived quasiparticles trapped in superconducting point contacts
We have observed that the supercurrent across phase-biased, highly
transmitting atomic size contacts is strongly reduced within a broad phase
interval around {\pi}. We attribute this effect to quasiparticle trapping in
one of the discrete sub-gap Andreev bound states formed at the contact.
Trapping occurs essentially when the Andreev energy is smaller than half the
superconducting gap {\Delta}, a situation in which the lifetime of trapped
quasiparticles is found to exceed 100 \mus. The origin of this sharp energy
threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be
published in Physical Review Letter
Superconducting atomic contacts inductively coupled to a microwave resonator
We describe and characterize a microwave setup to probe the Andreev levels of
a superconducting atomic contact. The contact is part of a superconducting loop
inductively coupled to a superconducting coplanar resonator. By monitoring the
resonator reflection coefficient close to its resonance frequency as a function
of both flux through the loop and frequency of a second tone we perform
spectroscopy of the transition between two Andreev levels of highly
transmitting channels of the contact. The results indicate how to perform
coherent manipulation of these states.Comment: 14 pages, 10 figures, to appear in special issue on break-junctions
in JOPC
Dynamics of quasiparticle trapping in Andreev levels
We present a theory describing the trapping and untrapping of quasiparticles
in the Andreev bound level of a single-channel weak link between two
superconductors. We calculate the rates of the transitions between even and odd
occupations of the Andreev level induced by absorption and emission of both
photons and phonons. We apply the theory to a recent experiment [Phys. Rev.
Lett. 106, 257003 (2011)] in which the dynamics of the trapping of
quasiparticles in the Andreev levels of superconducting atomic contacts coupled
to a Josephson junction was measured. We show that the plasma energy
of the Josephson junction defines a rather abrupt transition between a fast
relaxation regime dominated by coupling to photons and a slow relaxation regime
dominated by coupling to phonons. With realistic parameters the theory provides
a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review
Diurnal variation of non-specular meteor trails
We present results of simulated radar observations of meteor trails in an effort to show how non-specular meteor trails are expected to vary as a function of a number of key atmospheric, ionospheric and meteoroid parameters. This paper identifies which geophysical sources effect the variability in non-specular trail radar observations, and provides an approach that uses some of these parameter dependencies to determine meteoroid and atmospheric properties based upon the radar meteor observations. The numerical model used follows meteor evolution from ablation and ionization to head echo plasma generation and through formation of field aligned irregularities (FAI). Our main finding is that non-specular meteor trail duration is highly sensitive to the presence of lower thermospheric winds or electric fields and the background ionospheric electron density. In an effort to make key predictions we present the first results of how the same meteoroid is expected to produce dramatically different meteor trails as a function of location and local time. For example, we show that mid-latitude trail durations are often shorter lasting than equatorial trail observations because of the difference in mid-latitude wind speed and equatorial drift speed. The simulated trails also account for observations showing that equatorial nighttime non-specular meteor trails last significantly longer and are observed more often than daytime trails
Measurement of the current-phase relation of superconducting atomic contacts
We have probed the current-phase relation of an atomic contact placed with a
tunnel junction in a small superconducting loop. The measurements are in
quantitative agreement with the predictions of a resistively shunted SQUID
model in which the Josephson coupling of the contact is calculated using the
independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
The New Meteor Radar at Penn State: Design and First Observations
In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented
- …