134 research outputs found

    Spin Flip Probabilities in 208-Pb Measured with 200 MeV Protons

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR

    Full text link
    PURPOSE Radiomics is a promising tool for identification of new prognostic biomarkers. However, image reconstruction settings and test-retest variability may influence the absolute values of radiomic features. Unstable radiomic features cannot be used as reliable biomarkers. PET/MR is becoming increasingly available and often replaces PET/CT for different indications. The aim of this study was to quantify to what extend [18F]-FDG PET/CT radiomics models can be transferred to [18F]-FDG PET/MR and thereby to investigate the feasibility of combined PET/CT-PET/MR models. For this purpose, we compared PET radiomic features calculated on PET/MR and PET/CT and on a 4D gated PET/MR dataset to select radiomic features that are robust to attenuation correction differences and test-retest variability, respectively. METHODS Two cohorts of patients with lung lesions were studied. In the first cohort (n=10), inhale and exhale phases of a 4D [18F]-FDG PET/MR (4DPETMR) scan were used as a surrogate for a test-retest dataset. In the second cohort (n=9), patients underwent first an [18F]-FDG PET/MR scan (SIGNA PET/MR, GE Healthcare, Waukesha) followed by an [18F]-FDG PET/CT scan (Discovery 690, GE Healthcare) with a delay of 33 min ± 5 min (PETCT-PETMR). Lesions were segmented on inhale and exhale 4D-PET phases and on the individual PET scans from PET/CT and PET/MR with two semi-automated methods (gradient-based and threshold-based). The scan resolution was 2.73x2.73x3.27 mm and 2.34x2.34x2.78 mm for the PET/CT and PET/MR, respectively. In total, 1355 radiomic features were calculated, i.e. shape (n=18), intensity (n=17), texture (n=136) and wavelet (n=1184). The intra-class correlation coefficient (ICC) was calculated to compare the radiomic features of the 4DPETMR (ICC(1,1)) and PETCT-PETMR (ICC(3,1)) datasets. An ICC>0.9 was considered stable among both types of PET scans. RESULTS AND CONCLUSION 4DPETMR showed highest stability for shape, intensity and texture (>80%) and lower stability for wavelet features (40%). Gradient-based method showed higher stability compared to threshold-based method except from shape features. In PETCT-PETMR, more than 61% of shape and intensity features were stable for both segmentation methods. However, a reduced stability was observed for texture (50%) and wavelet (<30%) features. More wavelet features were robust in the smoothed images (low-pass filtering) compared to images with emphasized heterogeneity (high-pass filtering). Comparing stable features of both investigations, highest agreement was found for intensity and lower agreement for shape, texture and wavelet features. Only 53.6% of stable texture features in 4DPETMR were also stable in PETCT-PETMR, and even less in case of wavelet features (40.4%). Approximately 16.9% (texture) and 43.2% (wavelet) of stable PETCT-PETMR features are unstable in 4DPETMR. To conclude, shape and intensity features were robust when comparing two types of [18F]-FDG PET scans (PET/CT and PET/MR). Reduced stability was observed for texture and wavelet features. We identified multiple origins of instability of radiomic features, such as attenuation correction differences, different uptake times and spatial resolution. This needs to be considered when models based on PET/CT are transferred PET/MR models or when combined models are used. This article is protected by copyright. All rights reserved

    Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes

    Full text link
    The double barrier resonant tunneling diode exhibits complex spatio-temporal patterns including low-dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by time--delayed feedback control can be used to select and stabilize specific current density patterns in a noninvasive way. We compare the efficiency of different control schemes involving feedback in either local spatial or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results from linear stability analysis.Comment: 10 pages, 16 figure

    Comment on ``Large-space shell-model calculations for light nuclei''

    Get PDF
    In a recent publication Zheng, Vary, and Barrett reproduced the negative quadrupole moment of Li-6 and the low-lying positive-parity states of He-5 by using a no-core shell model. In this Comment we question the meaning of these results by pointing out that the model used is inadequate for the reproduction of these properties.Comment: Latex with Revtex, 1 postscript figure in separate fil

    Is there a Pronounced Giant Dipole Resonance in ^4He?

    Get PDF
    A four-nucleon calculation of the total ^4He photodisintegration cross section is performed. The full final-state interaction is taken into account for the first time. This is achieved via the method of the Lorentz integral transform. Semi-realistic NN interactions are employed. Different from the known partial two-body ^4He(\gamma,n)^3He and ^4He(\gamma,p)^3H cross sections our total cross section exhibits a pronounced giant resonance. Thus, in contrast to older (γ,np)(\gamma,np) data, we predict quite a strong contribution of the (γ,np)(\gamma,np) channel at the giant resonance peak energy.Comment: 10 pages, Latex (REVTEX), 4 Postscript figures, to appear in Phys. Rev. Let

    Photodisintegration of three- and four- nucleon systems

    Get PDF
    Three- and four-nucleon photodisintegration processes are quite efficiently treated by means of effective two-body integral equations in momentum space. We recall some aspects of their derivation, present previous and most recent results obtained within this framework, and discuss general features, trends and effects observed in these investigations: At low energies final-state interaction plays an important role. Even more pronounced is the effect of meson exchange currents. A considerable potential dependence shows up in the low-energy peak region. The different peak heights are found to be closely correlated with the corresponding binding energies. Above the peak region only the difference between potentials with or without p-wave contributions remains relevant. In the differential cross sections the electric quadrupole contributions have to be taken into account. The remarkable agreement between theory and experiment in pp-dd radiative capture is achieved only when incorporating this contribution, together with most of the above-mentioned effects. In the final part of this report we briefly review also methods developed, and results achieved in three- and four- nucleon electrodisintegration. We, in particular, compare them with a recent access to this problem, based on the construction of nucleon-nucleus potentials via Marchenko inversion theory.Comment: 20 pages LaTeX and 22 postscript figures included, uses epsfig.sty and espcrc1.sty. Invited talk at the XVth International Conference on Few-Body Problems in Physics (22-26 July, 1997, Groningen, The Netherlands). To be published in the conference proceedings in Nucl. Phys.

    Metacognition as Evidence for Evidentialism

    Get PDF
    Metacognition is the monitoring and controlling of cognitive processes. I examine the role of metacognition in ‘ordinary retrieval cases’, cases in which it is intuitive that via recollection the subject has a justified belief. Drawing on psychological research on metacognition, I argue that evidentialism has a unique, accurate prediction in each ordinary retrieval case: the subject has evidence for the proposition she justifiedly believes. But, I argue, process reliabilism has no unique, accurate predictions in these cases. I conclude that ordinary retrieval cases better support evidentialism than process reliabilism. This conclusion challenges several common assumptions. One is that non-evidentialism alone allows for a naturalized epistemology, i.e., an epistemology that is fully in accordance with scientific research and methodology. Another is that process reliabilism fares much better than evidentialism in the epistemology of memory

    The Epistemic Status of Processing Fluency as Source for Judgments of Truth

    Get PDF
    This article combines findings from cognitive psychology on the role of processing fluency in truth judgments with epistemological theory on justification of belief. We first review evidence that repeated exposure to a statement increases the subjective ease with which that statement is processed. This increased processing fluency, in turn, increases the probability that the statement is judged to be true. The basic question discussed here is whether the use of processing fluency as a cue to truth is epistemically justified. In the present analysis, based on Bayes’ Theorem, we adopt the reliable-process account of justification presented by Goldman (1986) and show that fluency is a reliable cue to truth, under the assumption that the majority of statements one has been exposed to are true. In the final section, we broaden the scope of this analysis and discuss how processing fluency as a potentially universal cue to judged truth may contribute to cultural differences in commonsense beliefs

    Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty

    Get PDF
    In radiation therapy, intensity maps involving margins have long been used to counteract the effects of dose blurring arising from motion. More recently, intensity maps with increased intensity near the edge of the tumour (edge enhancements) have been studied to evaluate their ability to offset similar effects that affect tumour coverage. In this paper, we present a mathematical methodology to derive margin and edge-enhanced intensity maps that aim to provide tumour coverage while delivering minimum total dose. We show that if the tumour is at most about twice as large as the standard deviation of the blurring distribution, the optimal intensity map is a pure scaling increase of the static intensity map without any margins or edge enhancements. Otherwise, if the tumour size is roughly twice (or more) the standard deviation of motion, then margins and edge enhancements are preferred, and we present formulae to calculate the exact dimensions of these intensity maps. Furthermore, we extend our analysis to include scenarios where the parameters of the motion distribution are not known with certainty, but rather can take any value in some range. In these cases, we derive a similar threshold to determine the structure of an optimal margin intensity map.National Cancer Institute (U.S.) (grant R01-CA103904)National Cancer Institute (U.S.) (grant R01-CA118200)Natural Sciences and Engineering Research Council of Canada (NSERC)Siemens AktiengesellschaftMassachusetts Institute of Technology. Hugh Hampton Young Memorial Fund fellowshi
    corecore