19 research outputs found

    Oxytocin‐loaded sustained‐release hydrogel graft provides accelerated bone formation: An experimental rat study

    No full text
    Restoration of the lost bone volume is one of the most deliberate issues in dentistry. Sustained-release microspherical oxytocin hormone in a poloxamer hydrogel scaffold combined with a mixture of beta-tricalcium phosphate and hydroxyapatite (CP) may serve as a suitable bone graft. The aim of this study was to design and test a novel thermosensitive hydrogel graft incorporating oxytocin-loaded poly(d, l-lactide-co-glycolide) (PLGA) sustained-release microspheres and CP. Thermosensitive poloxamer hydrogel containing CP (HCP graft) was prepared as a base and combined with hollow microspheres (HCPM) and oxytocin-loaded microspheres (HCPOM). Eighty Wistar rats were used for testing the grafts and a control group in 8-mm-diameter critical-sized calvarial defects (CSD); (n = 20). Bone healing at the 4th and 8th weeks was evaluated by histological, histomorphometric, and radiological (micro-computed tomography [mu CT]) analyses. The results were analyzed by two-way analysis of variance (P .05). mu CT findings of HCPOM group showed the highest mean bone mineral density values (42.21 +/- 5.14 and 46.94 +/- 3.30 g/cm(3) for the 4th and 8th weeks, respectively; P < .0027). The proposed oxytocin-loaded sustained-release PLGA microspheres containing thermosensitive hydrogel graft (HCPOM) provide an accelerated bone regeneration in the rat calvaria
    corecore