22 research outputs found

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Ballistic Josephson junctions in edge-contacted graphene

    Full text link
    Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphene-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P\'{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μ\mum. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.Comment: Updated version after peer review. Includes supplementary material and ancillary file with source code for tight binding simulation

    Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene

    Get PDF
    Graphene-based Josephson junctions provide a novel platform for studying the proximity effect due to graphene's unique electronic spectrum and the possibility to tune junction properties by gate voltage. Here we describe graphene junctions with a mean free path of several micrometres, low contact resistance and large supercurrents. Such devices exhibit pronounced Fabry-P\'erot oscillations not only in the normal-state resistance but also in the critical current. The proximity effect is mostly suppressed in magnetic fields below 10mT, showing the conventional Fraunhofer pattern. Unexpectedly, some proximity survives even in fields higher than 1 T. Superconducting states randomly appear and disappear as a function of field and carrier concentration, and each of them exhibits a supercurrent carrying capacity close to the universal quantum limit. We attribute the high-field Josephson effect to mesoscopic Andreev states that persist near graphene edges. Our work reveals new proximity regimes that can be controlled by quantum confinement and cyclotron motion

    Pb-Graphene-Pb josephson junctions: Characterization in magnetic field

    No full text
    We fabricate superconductor-graphene-superconductor Josephson junctions with superconducting regions made of lead (Pb). The critical current through graphene may be modulated by the external magnetic field; the resulting Fraunhofer interference pattern shows several periods of oscillations, suggesting that the junction is uniform. Deviations from the perfect Fraunhofer pattern are observed, and their cause is explained by a simulation that takes into account the sample design. © 2002-2011 IEEE

    Phase diffusion in graphene-based Josephson junctions.

    No full text
    We report on graphene-based Josephson junctions with contacts made from lead. The high transition temperature of this superconductor allows us to observe the supercurrent branch at temperatures up to ∼2 K, at which point we can detect a small, but nonzero, resistance. We attribute this resistance to the phase diffusion mechanism, which has not been yet identified in graphene. By measuring the resistance as a function of temperature and gate voltage, we can further characterize the nature of the electromagnetic environment and dissipation in our samples

    Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures.

    No full text
    We examine the nature of the transitions between the normal and superconducting branches in superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures (T≲1 K). The relationship between the applied power and the electron temperature was found to be P∝T3, which we argue is consistent with cooling due to electron-phonon interactions

    One-Year Follow-Up Results of MIS-C Patients with Coronary Artery Involvement: A Multi-center Study

    No full text
    Multisystem inflammatory syndrome (MIS-C) in children is a rare complication of SARS-CoV-2 infection. Knowing the course of the affected or unaffected coronary arteries in the patients under follow-up is important in terms of defining the long-term prognosis of the disease and determining the follow-up plan. This is a multicenter and retrospective study. The data were obtained from nine different centers. Between May 2020 and August 2022, 68 of 790 patients had coronary artery involvement. One-year echocardiographic data of 67 of 789 MIS-C patients with coronary artery involvement were analyzed. Existing pathologies of the coronary arteries were grouped as increased echogenicity, dilatation and aneurysm according to Z scores, and their changes over a 1-year period were determined. The data of all three groups are defined as frequency. SPSS Statistics version 22 was used to evaluate the data. In our study, aneurysm was observed in 16.4%, dilatation in 68.7% and increased echogenicity in 13.4% of the patients. All of the patients with involvement in the form of increased echogenicity recovered without sequelae by the end of the first month. No progression to aneurysm was observed in any of the patients with dilatation. No new-onset involvement was observed in patients with previously healthy coronary arteries during the convalescent period. In addition, from the sixth month follow-up period, there was no worsening in the amount of dilatation in any of the patients. At least 94% of the patients who completed the 12th month control period returned to normal
    corecore