29 research outputs found

    Childhood deaths from external causes in Estonia, 2001–2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2000, the overall rate of injury deaths in children aged 0–14 was 28.7 per 100000 in Estonia, which is more than 5 times higher than the corresponding rate in neighbouring Finland. This paper describes childhood injury mortality in Estonia by cause and age groups, and validates registration of these deaths in the Statistical Office of Estonia against the autopsy data.</p> <p>Methods</p> <p>The data on causes of all child deaths in Estonia in 2001–2005 were abstracted from the autopsy protocols at the Estonian Bureau of Forensic Medicine. Average annual mortality rates per 100,000 were calculated. Coverage (proportion of the reported injury deaths from the total number of injury deaths) and accuracy (proportion of correctly classified injury deaths) of the registration of causes of death in Statistical Office of Estonia were assessed by comparing the Statistical Office of Estonia data with the data from Estonian Bureau of Forensic Medicine.</p> <p>Results</p> <p>Average annual mortality from external causes in 0–14 years-old children in Estonia was 19.1 per 100,000. Asphyxia and transport accidents were the major killers followed by poisoning and suicides. Relative contribution of these causes varied greatly between age groups. Intent of death was unknown for more than 10% of injury deaths. Coverage and accuracy of registration of injury deaths by Statistical Office of Estonia were 91.5% and 95.3%, respectively.</p> <p>Conclusion</p> <p>Childhood mortality from injuries in Estonia is among the highest in the EU. The number of injury deaths in Statistical Office of Estonia is slightly underestimated mostly due to misclassification for deaths from diseases. Accuracy of the Statistical Office of Estonia data was high with some underestimation of intentional deaths. Moreover, high proportion of death with unknown intent suggests underestimation of intentional deaths.</p> <p>Reduction of injury deaths should be given a high priority in Estonia. More information on circumstances around death is needed to enable establishing the intent of death.</p

    A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Brassica rapa </it>is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational <it>B. rapa </it>Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the <it>B. rapa </it>genome. Several maps concerning <it>B. rapa </it>pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required.</p> <p>Results</p> <p>This study concerns the construction of a reference genetic linkage map for <it>Brassica rapa</it>, forming the backbone for anchoring sequence scaffolds of the <it>B. rapa </it>genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (<it>B. rapa </it>ssp. <it>pekinensis</it>) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing <it>B. rapa </it>linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the <it>B. rapa </it>genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%.</p> <p>Conclusions</p> <p>The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international <it>Brassica </it>research community.</p

    Tests of multiple molecular markers for the identification of Great Spotted and Syrian Woodpeckers and their hybrids

    Get PDF
    Great Spotted and Syrian Woodpeckers (Dendrocopos major and D. syriacus) are known to hybridize in nature; however, the extent of this phenomenon is not known due to difficulties in hybrid detection based on plumage analyses. Here, we tested five markers (one mitochondrial and four nuclear) and a set of six microsatellite loci for the identification of these two Woodpeckers and their hybrids. Sequencing of DNA from 26 individuals of both Woodpeckers from different parts of their ranges: one allopatric (D. major; Norway) and two sympatric (Poland and Bulgaria) showed that both species can be clearly separated based on all sequence markers. The highest number of fixed nucleotide sites were found in the mtDNA control region and intron 5 of the transforming growth factor. Analyses of microsatellite data distinguished the two species, but all loci showed a large number of common alleles and their utility in identifying hybrids is therefore doubtful. According to the DNA sequence analyses, 2 out of 18 specimens within the sympatric range in Poland were identified as possible hybrids, most probably paternal backcrosses. Moreover, both hybrids are from synantropic populations (settled in cities), whereas none of the D. major sampled in forests and in its allopatric range (Norway) showed signs of an intermixed genotype. Further research on hybridization and introgression in woodpeckers is undoubtedly needed and could be useful for understanding ecological and ethological interactions among these species, particularly for D. syriacus, which is relatively rare in Europe

    The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences

    Get PDF
    Commercial whaling caused extensive demographic declines in many great whale species, including gray whales that were extirpated from the Atlantic Ocean and dramatically reduced in the Pacific Ocean. The Eastern Pacific gray whale has recovered since the 1982 ban on commercial whaling, but the Western Pacific gray whale-once considered possibly extinct-consists of only about 200 individuals and is considered critically endangered by some international authorities. Herein, we use whole-genome sequencing to investigate the demographic history of gray whales from the Pacific and use environmental niche modelling to make predictions about future gene flow.Our sequencing efforts and habitat niche modelling indicate that: i) western gray whale effective population sizes have declined since the last glacial maximum; ii) contemporary gray whale genomes, both eastern and western, harbor less autosomal nucleotide diversity than most other marine mammals and megafauna; iii) the extent of inbreeding, as measured by autozygosity, is greater in the Western Pacific than in the Eastern Pacific populations; and iv) future climate change is expected to open new migratory routes for gray whales.Our results indicate that gray whale genomes contain low nucleotide diversity and have been subject to both historical and recent inbreeding. Population sizes over the last million years likely peaked about 25,000 years before present and have declined since then. Our niche modelling suggests that novel migratory routes may develop within the next century and if so this could help retain overall genetic diversity, which is essential for adaption and successful recovery in light of global environmental change and past exploitation

    Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE): a prospective European multicentre observational study

    Get PDF
    BACKGROUND: Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences. METHODS: We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes. RESULTS: Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1–6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2<90% for 60 s) was reported in 40%. No associated risk factors could be identified among co-morbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality. CONCLUSIONS: The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event

    SNP discovery and characterisation in White Rhino (Ceratotherium simum) with application to parentage assignment

    No full text
    Abstract The white rhino is one of the great success stories of modern wildlife conservation, growing from as few as 50-100 animals in the 1880s, to approximately 20,000 white rhinoceros remaining today. However, illegal trade in conservational rhinoceros horns is adding constant pressure on remaining populations. Captive management of ex situ populations of endangered species using molecular methods can contribute to improving the management of the species. Here we compare for the first time the utility of 33 Single Nucleotide Polymorphisms (SNPs) and nine microsatellites (MS) in isolation and in combination for assigning parentage in captive White Rhinoceros. We found that a combined dataset of SNPs and microsatellites was most informative with the highest confidence level. This study thus provided us with a useful set of SNP and MS markers for parentage and relatedness testing. Further assessment of the utility of these markers over multiple (> three) generations and the incorporation of a larger variety of relationships among individuals (e.g. half-siblings or cousins) is strongly suggested
    corecore