532 research outputs found

    A Characterisation of the Weylian Structure of Space-Time by Means of Low Velocity Tests

    Get PDF
    The compatibility axiom in Ehlers, Pirani and Schild's (EPS) constructive axiomatics of the space-time geometry that uses light rays and freely falling particles with high velocity, is replaced by several constructions with low velocity particles only. For that purpose we describe in a space-time with a conformal structure and an arbitrary path structure the radial acceleration, a Coriolis acceleration and the zig-zag construction. Each of these quantities give effects whose requirement to vanish can be taken as alternative version of the compatibility axiom of EPS. The procedural advantage lies in the fact, that one can make null-experiments and that one only needs low velocity particles to test the compatibility axiom. We show in addition that Perlick's standard clock can exist in a Weyl space only.Comment: to appear in Gen.Rel.Gra

    Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array

    Get PDF
    This work confirms that not only surface plasmons but many other kinds of electromagnetic eigenmodes should be considered in explaining the values of the transmittivity through a slab bearing a two-dimensional periodic corrugation. Specifically, the role of Brewster-Zennek modes appearing in metallic films exhibiting regions of weak positive dielectric constant. It is proposed that these modes play a significant role in the light transmission in a thin chromium film perforated with normal cylindrical holes, for appropriate lattice parameters.Comment: 5 pages, 4 figures. Published versio

    Optical bistability in subwavelength apertures containing nonlinear media

    Full text link
    We develop a self-consistent method to study the optical response of metallic gratings with nonlinear media embedded within their subwavelength slits. An optical Kerr nonlinearity is considered. Due to the large E-fields associated with the excitation of the transmission resonances appearing in this type of structures, moderate incoming fluxes result in drastic changes in the transmission spectra. Importantly, optical bistability is obtained for certain ranges of both flux and wavelength.Comment: 4 pages, 4 figure

    Data Encoding in Lossless Prediction-Based Compression Algorithms

    Get PDF

    Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions

    Get PDF
    We present new results from measurements and simulations of positron spectra, originating from 238U + 181Ta collisions at beam energies close to the Coulomb barrier. The measurements were performed using an improved experimental setup at the double-Orange spectrometer of GSI. Particular emphasis is put on the signature of positrons from Internal-Pair-Conversion (IPC) processes in the measured e+ energy spectra, following the de-excitation of electromagnetic transitions in the moving Ta-like nucleus. It is shown by Monte Carlo simulations that, for the chosen current sweeping procedure used in the present experiments, positron emission from discrete IPC transitions can lead to rather narrow line structures in the measured energy spectra. The measured positron spectra do not show evidence for line structures within the statistical accuracy achieved, although expected from the intensities of the observed γ\gamma transitions (Eγ 12501600_{\gamma}~1250-1600 keV) and theoretical conversion coefficients. This is due to the reduced detection efficiency for IPC positrons, caused by the limited spatial and momentum acceptance of the spectrometer. A comparison with previous results, in which lines have been observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.

    The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials

    Get PDF
    We assert that the physics underlying the extraordinary light transmission (reflection) in nanostructured materials can be understood from rather general principles based on the formal scattering theory developed in quantum mechanics. The Maxwell equations in passive (dispersive and absorptive) linear media are written in the form of the Schr\"{o}dinger equation to which the quantum mechanical resonant scattering theory (the Lippmann-Schwinger formalism) is applied. It is demonstrated that the existence of long-lived quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmission properties observed in various nanostructured materials. Such states correspond to quasistationary electromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of resonances (or trapped modes) for extraordinary light transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos corrected; a reference added; Figure 4 revise

    Mechanical and dielectric relaxation spectra in seven highly viscous glass formers

    Full text link
    Published dielectric and shear data of six molecular glass formers and one polymer are evaluated in terms of a spectrum of thermally activated processes, with the same barrier density for the retardation spectrum of shear and dielectrics. The viscosity, an independent parameter of the fit, seems to be related to the high-barrier cutoff time of the dielectric signal, in accordance with the idea of a renewal of the relaxing entities after this critical time. In the five cases where one can fit accurately, the temperature dependence of the high-barrier cutoff follows the shoving model. The Johari-Goldstein peaks, seen in four of our seven cases, are describable in terms of gaussians in the barrier density, superimposed on the high-frequency tail of the α\alpha-process. Dielectric and shear measurements of the same substance find the same peak positions and widths of these gaussians, but in general a different weight.Comment: Contribution to the Ngai Fest issue of J. Non-Cryst. Solids; 8 pages, 8 figures, 30 reference

    Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes

    Get PDF
    We present a theorical investigation of the optical transmission of a dielectric grating carved in a tungsten layer. For appropriate wavelengths tungsten shows indeed a dielectric behaviour. Our numerical simulations leads to theoretical results similar to those found with metallic systems studied in earlier works. The interpretation of our results rests on the idea that the transmission is correlated with the resonant response of eigenmodes coupled to evanescent diffraction orders.Comment: 4 pages, 3 figure
    corecore