
Data Encoding in Lossless Prediction-Based
Compression Algorithms

Ugur Cayoglu†∗, Frank Tristram‡, Jörg Meyer∗, Jennifer Schröter†,
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Abstract—The increase in compute power and development
of sophisticated simulation models with higher resolution out-
put triggers a need for compression algorithms for scientific
data. Several compression algorithms are currently under de-
velopment. Most of these algorithms are using prediction-based
compression algorithms, where each value is predicted and the
residual between the prediction and true value is saved on
disk. Currently there are two established forms of residual
calculation: Exclusive-or and numerical difference. In this paper
we will summarize both techniques and show their strengths
and weaknesses. We will show that shifting the prediction and
true value to a binary number with certain properties results in a
better compression factor with minimal additional computational
costs. This gain in compression factor allows for the usage
of less sophisticated prediction algorithms to achieve a higher
throughput during compression and decompression. In addition,
we will introduce a new encoding scheme to achieve an 9%
increase in compression factor on average compared to the
current state-of-the-art.

Index Terms—data compression, xor, lossless, lossy, climate
data

I. INTRODUCTION

With the advent of next-generation models and ever-
increasing compute power on HPC clusters, climate scientists
have achieved a breakthrough in high-resolution simulations
that calculate global simulations with a horizontal resolution
of 13 kilometres (e.g. ICON-ART [1]). These models produce
an unprecedented volume of data, so that future studies are
limited by storage capacity rather than numerical calcula-
tions. This constraint often forces the scientists to reduce
the temporal resolution of their simulation output and use
interpolation techniques for the missing time steps. As a
result, the generated output is just an inferior representation of
the actual model used for the simulation, which means, that
the quality assessment of the model can only be performed
with an inferior representation of limited output. Additionally,
simulations might need to run more than once, when data is
required for model assessments that have not been saved in
the first instance. One method to tackle this problem is to

remove redundant information in the data by compression and
thus allow for a higher temporal resolution of the simulation
output.

In this paper we will give an overview of currently applied
encoding schemes in compression algorithms for floating-
point data. We will introduce a novel encoding scheme to
further improve either compression rate or throughput. We will
show that shifting the prediction and true value to a binary
number with certain properties results in a better compression
factor with minimal additional computational costs. This gain
in compression factor allows the usage of less sophisticated
prediction algorithms to achieve a higher throughput.

The remainder of this paper is divided into five sections:
An overview of current encoding schemes is presented in
Section II. Related Work is described in Section III. Section IV
describes our proposed method and metrics. Finally in Section
V an evaluation of our proposed method is presented and
discussed. In the concluding section we give a short summary
and an outlook regarding future work.

II. PRELIMINARIES

There are lossless and lossy compression algorithms. Loss-
less algorithms are used if the reconstructed data needs to
be exactly the same as the input data. Lossy algorithms
are preferred if size reduction is the biggest concern and a
small information loss is acceptable. Both types of algorithms
work by first decorrelating and then encoding the data. The
decorrelation step eliminates redundancy in the data being it
autocorrelated or cross correlated information. The encoding
step is where the actual compression happens and the data
is written on disk. A lossy compression algorithm has ad-
ditionally an approximation step in between to further align
the data for encoding. The approximation step reduces the
complexity of the data for example by using methods of
quantized representation for data points.

Since most of the following algorithms use a prediction-
based compression algorithm, it might be helpful to remind the



reader about the steps involved. A prediction-based algorithm
traverses the data in a predefined path. During this traversal
each data point is visited exactly once. For each of these data
points the most probable value is predicted (further on referred
to as the prediction value p). After p has been calculated it is
being compared with the true value t for that data point. The
residual r = diff(p, t) is then encoded and saved on disk.
Since the traversal path and calculation of p is predefined
by the compression algorithm, the value t can be reproduced
by saving r. Although the calculation of a good predictive
value p can be decisive for a good compression algorithm,
this assessment is beyond the scope of this paper. Please refer
to [2] for a comparison of prediction models. In this paper we
study the influence of different encoding steps and assume that
the same prediction model has been used by all algorithms.

The difficulty with floating-point data is the potentially
infinite candidate space for p. While compression of textual
data uses a 26 letter alphabet, the number of words of length
l occurring in an English text is rather limited. This is not
the case for numerical, especially floating-point data. Further,
it is important to notice that the actual calculation is not
being done using floating-point operations. Before the residual
is calculated, both values are mapped to unsigned integers
to guarantee reproducibility across hardware architectures1.
Two different methods for residual calculations are currently
established.

diffxor(p, t) = p⊕ t (1)
diffabs(p, t) = | p− t | (2)

Both methods have their strengths and weaknesses. The first
approach (Eq. 1) uses a bitwise Exclusive-Or (XOR) for
residual calculation. The advantage of this approach is that it is
a very fast operation on modern hardware. Another advantage
is that the reverse operation applied during decompression is
literally the same operation with t = p⊕r. No further informa-
tion is needed to be transferred between encoder and decoder.
The disadvantage of XOR is that two numbers representing
very close values can still produce a very large residual. This is
due to the two’s-complement binary representation of floating-
point numbers. This pitfall can be observed if p and t are close
and on the opposite side of a power of two e.g. p = 256.321
and t = 255.931. While the difference is 0.39 the residual
calculated using Eq. 1 is r = 16762689 and using Eq. 2 is
r = 15041. These residuals need to be saved on disk. The
former residual needs 24 bits to be represented and the latter
only 14.

The second approach (Eq. 2) uses the absolute difference
of the two numbers, or in other words, it represents the
amount of binary numbers between the two numbers using
two’s-complement binary representation. Since the accuracy
of two’s-complement binary representation of a value is
limited, the value range of the compared values plays a

1While there are several methods to do this, these methods are beyond the
scope of this paper. For the following we assume a simple mapping of the
raw binary representation from floating-point values to unsigned integers.

central role in residual calculation using this approach. Given
p = 847, 390.837 and t = 847, 794.417 the difference is
403.58, but the residual r is 6458 (Eq. 1). Despite the fact
that the prediction p = 847, 390.837 (compared with t =
847, 794.417) seems to be worse than p = 256.321 (compared
with t = 255.931) at first glance, it is still considered a
better prediction using Eq. 1 given two’s-complement binary
representation of floating-point values.

The advantage of this approach is that the resulting residual
is always smaller or at worst the same size as the residual
calculated by Eq. 1. The disadvantage is that one needs to
store additional information about the prediction p. Without
the information if p is above or below t a successful decom-
pression can not happen. Another disadvantage is that to avoid
an overflow or underflow one cannot calculate r in a single
computation step like an XOR. This must be split into two
steps by first calculating max(p, t) and then subtracting the
smaller one from the bigger. This is especially important if
the values are close to the smallest or biggest representable
numbers using single or double precision floating-point num-
bers.

In the following section we will describe related work and
current state-of-the-art approaches for residual calculation and
data encoding.

III. RELATED WORK

In the last couple of years the development of compression
algorithms for floating-point data experienced a renaissance.
Several new methods were introduced [2]–[14] focusing on
structural dependencies in gridded floating-point data. Most
of these compression algorithms use a prediction-based com-
pression.

For brevity, we will only describe the most relevant methods
in this section based on citation count and effectiveness of
method. Please refer to the appropriate papers for more details.
Most of the methods use XOR residual calculation. They
encode the Leading Zero Count (LZC) of the residual and save
the remainder of the residual verbatim on disk. If the residual
is small, it will have a high LZC. This LZC is then encoded
using Huffman [15] or Arithmetic Encoding [16] which further
reduces the file size.

Residuals calculated using Eq. 2 are similarly encoded as
the ones using XOR. Here, too, the LZC is calculated and
encoded. Additionally, a single bit is needed to represent if
p is below or above t. This information is saved verbatim on
disk like the remainder of the residual.

One exception of these approaches is given in Lindstrom et
al. [11]. Here the authors merge both information (LZC and
position of p relative to t) into a single value by adding or
subtracting the LZC to 32 (in case of single precision floating-
point data) or 64 (in case of double precision floating-point
data). While this approach elegantly circumvents the additional
bit needed for the position of p relative to t, it also increases
the alphabet of the Range Encoding [16] used by the authors.
But nonetheless this approach is highly effective and proofs as
state-of-the-art in lossless compression of floating-point data



regarding the balance between compression factor and data
throughput.

In the following section we will introduce a novel algorithm
for calculating and encoding the residual using XOR residual
calculation.

IV. PROPOSED METHOD

We compare two different residual calculation and encoding
schemes in this paper. Both methods are depicted in Figure 1.
As we highlighted in the previous section, the current state-of-
the-art lossless compression algorithm for floating-point data
is fpzip [11]. Its residual calculation and encoding scheme
is highlighted with a dark grey background and from now on
referred to as fpzip. Our proposed algorithm is highlighted
using a light grey background and further referred to as pzip.

The first step in our proposed algorithm is to shift p and t to
another value range which is more suitable for the difference
calculation. Then the actual difference calculation is applied
using the XOR method (Eq. 1). For our investigation, the
residual is then split into three streams. Two of these are first
transformed using the Burrow-Wheeler-Transform (BWT) and
then written on disk using Range Encoding (RE). The third
and final stream is saved verbatim on disk.

In the following section we will describe each of these steps
in more detail.

A. Shifted XOR

In Section II we mentioned that the disadvantage of using
XOR in residual calculation is that small differences between
p and t might result with a large residual. An example was
given with p = 256.321 and t = 255.931. The reason for this
disadvantage can be seen if we look at the two’s-complement
binary representation of both values:

The XOR is defined as follows:

p⊕ t = (p ∨ ¬t) ∧ ¬(p ∧ t) (3)
= (p ∧ ¬t) ∨ (¬p ∧ t) (4)

The bit at index i of p ⊕ t is set to 1, if the bit at index i
of p is different than the bit of t at index i. In the example
given in Figure 2 the XOR calculation has a small LZC of
eight and a rather long following one count (FOC) of ten.
Although the example is deliberately chosen so that the FOC
is large, these instances occur very frequently when XOR is
used. One advantage, however, is that extreme cases with very
large FOC are well predictable. Due to the high number of
zeros at positions 9-18, we can estimate that a possible bit
flip is imminent and can act accordingly.

Our proposed residual calculation method adds two addi-
tional steps to the common method described in Section II.
The first is to calculate a shift value s to be added to the

prediction p so that s = g(p) − p is satisfied, where g(p) is
defined by the following equation:

g(p) =



15∑
k=1

22k−1 if p < 230

14∑
k=0

22k if 230 ≤ p < 231

16∑
k=1

22k−1 if 231 ≤ p < 232

15∑
k=0

22k if 232 ≤ p

(5)

The binary representation of each of the goals is a fluctuation
of zeros and ones. An example for the goal is the following:

g1 =

15∑
k=1

22k−1 and g2 =

15∑
k=0

22k

bin(g1) = 00101010101010101010101010101010
bin(g2) = 01010101010101010101010101010101

After the goal g has been identified and the necessary shift s
calculated the same shift value will be added to the true value
t. Following, the residual calculation proceeds as usual with
applying the XOR operation to the shifted prediction p̂ and
shifted true value t̂ to calculate the new residual r̂:

r̂ = p̂⊕ t̂ (6)

The shift value can be recalculated without any information
transfer between the encoder and decoder, since the decoder
can recalculate the shift s with the available information.

B. Splitting of the Residual

In the next step, we split each residual into three com-
ponents: LZC, FOC and the remainder of the residual. As
mentioned before, the LZC specifies how many of the Most
Significant Bits (MSB) are set to zero. Due to its definition,
this block of zeros is always followed by a block of ones with
size ≥ 1. The FOC determines the size of this block. The sum
of LZC and FOC for a residual is restricted to 32 (64) for
single (double) precision floating-point values. The remaining
residual is then finally captured as the third component. Since
we know that the bit following FOC will be zero, this bit will
not be saved on disk.

Given the example in Section IV-A with p = 256.321 and
t = 255.931 the following components are obtained for p⊕ t:

p⊕ t = 00000000111111111100011101000001
LZC(p⊕ t) = 8

FOC(p⊕ t) = 10

RES(p⊕ t) = 0011101000001

where RES represents the remaining residual as binary repre-
sentation.



Fig. 1. Flowchart of the residual calculation and encoding phase of the current state of the art lossless compression algorithm for floating-point data (dark
grey) and our proposed method (light grey). Since it is assumed that both methods use the same decorrelation steps (including the prediction model used for
the calculation of p) the computation steps until the encoding step are not depicted.

Fig. 2. An example for the XOR residual calculation method.

C. Encoding of LZC/FOC

The LZCs and FOCs of the data is then reordered using
BWT [17]. The BWT algorithm rearranges a given set of
values in such a way, that same values are more likely to
appear one after another than in the input. Finally the newly
transformed set is encoded using RE. Since the LZC and FOC
are independent from each other the BWT and RE can be
performed concurrently for both sets.

D. Metrics

For evaluating the encoding algorithms we are using two
metrics: compression factor (CF) and throughput. CF puts the
file size before the compression and after the compression into
relation:

CF =
Filesize before compression
Filesize after compression

(7)

The higher the CF, the better the encoding algorithm.
The second quality measure for the encoding algorithms is

the throughput, which indicates the amount of data processed
per time unit. In our case we use either Bytes/s or MiB/s.

throughput =
Filesize [Bytes or MiB]

Total Processing Time [sec]
(8)

E. Data

For the experiments described in Section V we are using
two different datasets. The first dataset is a synthetic dataset
generated using a Gaussian distribution with several mean
and standard deviations. These data cover a broad spectrum
of possible datasets, which might be compressed with both

algorithms. The synthetic data was mainly used for the analysis
of the XOR residual calculation when the data is close to a
power of two (see Fig. 4 and 5).

The second dataset is obtained from a climate simulation
performed using the ICON model [1]. The simulation was
performed for an analysis of the POLar STRAtosphere in a
Changing Climate (POLSTRACC) [18], [19] campaign, which
performed flight measurements between December 2015 and
March 2016. It consists of data with two different vertical
resolutions. The datasets consists of a 901x351 (longitude,
latitude) structured grid with 47 (respectively 90) vertical
levels and four time steps (every six hours). The following
variables were available as single precision floating-point
values: geopotential, vertical velocity, potential vorticity, cloud
water, cloud ice content, specific humidity, temperature, virtual
temperature, zonal wind, vorticity and meridional wind.

F. Experiments

Several experiments were carried out to test the individual
steps of the algorithm. First, the residual generated using XOR
was analysed. We focused on the difficult case where the target
value ranges around powers of two. The distribution of set
and unset bits in the residual were analysed. This should give
us clues as to whether the residual still contains redundant
information or whether it is noise. Further we analysed the
effects of the shifted XOR calculation regarding throughput
and compression factor.

Another experiment was conducted to test different encod-
ing schemes. For data transformation we used the Burrow-
Wheeler-Transform [17] and Move-to-front [20]. Data encod-
ing was performed using Range Encoding, Huffman Encoding
and Run-length Encoding. These transformations and encoding
schemes were applied on the original data as well as the
difference (i.e. ∆x) of the data.

Further, we analysed the throughput and timing of each step
in our proposed compression algorithm. The final analysis, the



Fig. 3. Average compression factor and throughput of the climate simulation
dataset with currently available compression algorithms.

compression rate and throughput as well as the complexity of
the proposed compression algorithm were tested.

G. Implementation

All experiments were conducted on an Intel i5-7200U with
2.5 GHz running GNU/Linux 4.19.28 Debian with 16 GiB
RAM. A native C implementation of fpzip was used. Our
proposed algorithm was implemented in Rust 1.33.0-nightly.

V. EVALUATION

This chapter has been divided into five sections: Each
section describes an experiment performed to gain insights for
each step of the compression process. The first experiment was
conducted to assess currently available lossless compression
algorithms using climate data. The next two experiments anal-
yse more in depth the behaviour of XOR residual calculation
and helps optimize its performance. The fourth experiment
helps us assess available transformation and encoding steps.
Finally we compare our proposed method with the state-of-
the-art lossless compression algorithm fpzip.

A. State-of-the-art Compression Algorithms

In order to determine the currently best compression algo-
rithm for floating-point data, we have run the climate simu-
lation output with various current compression applications.
The results are shown in Figure 3. The applied compression
applications are: blosc [21], fpzip [11], xz, bzip2, zip,
brotli [22], spdp [23], and fpc [24]. All algorithms were
set in such a way to maximize compression factor.

Fig. 3 indicates that fpzip performed best with a com-
pression factor close to 2.4. The runner-up was blosc with
a compression factor of approximately 2.0. The throughput of
fpzip was not as good as that of brotli, spdp or fpc,
but taking into account the mediocre performance of these
algorithms regarding compression factor, it can be seen that
fpzip is currently the best performing algorithm regarding
lossless compression of floating-point data.

TABLE I
EFFECTS OF USING A SHIFTED XOR WITH A MORE SOPHISTICATED

PREDICTION ALGORITHM (LORENZ) AND INFERIOR ONE (LAST VALUE)
FOR SELECTED CLIMATE SIMULATION VARIABLES. DEPICTED ARE THE

THROUGHPUT AND AVERAGE LZC WITH AND WITHOUT (IN
PARENTHESIS) SHIFT OPERATION.

Climate variable Prediction Throughput [MiB/s] Avg. LZC

Temperature
Lorenz 19.86 (22.32) 24.01 (23.75)
Last Value 31.33 (36.15) 22.89 (22.65)

Zonal wind
Lorenz 18.23 (18.68) 19.88 (19.61)
Last Value 30.27 (37.49) 18.12 (17.83)

Geopotential
Lorenz 18.86 (19.92) 29.05 (28.85)
Last Value 32.10 (37.91) 28.92 (28.83)

Observation 1: While there might be usage scenarios where
fpzip is not the most successful compression algorithm, the
results indicate that fpzip is on average the best perform-
ing algorithm for lossless compression of floating-point data
regarding compression factor. Every future algorithm should
measure itself against these results.

B. Shifted XOR

First we analyse the average LZC of a residual build
with XOR for different Gaussian distributions (i.e. synthetic
dataset). The results are plotted in Figure 4 and 5. The LZC
breaks most severely when the average value is a power of
two (marked by dotted lines). The intensity of these LZC dips
is larger and stronger the smaller the standard deviation in
the data. The closer the data points are to each other, the
more important it is to get out of this range and perform
the residual calculation in a different value range. The shift
operation introduced by us is characterized by the solid vertical
line. The shift achieves a higher average LZC and thus reduces
the data to be compressed.

The shift can also help to increase throughput by using a
simpler prediction model for compression and compensating
for the weaknesses of the simpler prediction model with the
shift. Table I shows that using a simple prediction model (Last
Value) we can achieve a 50% higher throughput while still
coming close to the LZC of the more sophisticated prediction
method without shifted residual calculation2.

Observation 2: The compression performance is dependent
on the value ranges covered by the data and its distribution.
A shifted residual calculation can improve the LZC and help
reduce the data to be compressed.

Observation 3: The shifted XOR calculation improves the
average LZC and therefore the compression factor. It allows
the use of simpler prediction models for higher throughput
with comparable average LZCs.

C. Splitting of the Residual

In the next experiment we will take a closer look at the
distribution of set and unset bits in the residual. If there is

2For details about the Lorenz and Last Value prediction methods please
refer to [2], [11]
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no information in the residual, we expect an even distribution
of set and unset bits (i.e. white noise). Like in the previous
experiment, we used the Gaussian distributed artificial dataset.

The results shown in Figure 6 indicate that the distribution
of set and unset values is not uniform. The number of set
bits at the most significant positions of the residual occur at
a much higher rate than the number of unset bits. Even at a
length of six bits there is a clear difference to the expected
even distribution (i.e. horizontal line in figure). This unequal
distribution is caused by the bitflips occurring due to the
application of the XOR residual. Due to this observation we
decided to extract this information using the FOC described
in Section IV

Observation 4: Using XOR residual calculation there is a
skewed distribution of the set and unset bits. This unequal
distribution shows that there still remains some information in

the residual and that the compression factor can be increased.
A method to extract this information is to encode the number
of FOCs separately, as proposed by us.

D. Performance of Encoding Methods

In this section we will take a closer look at different encod-
ing scheme. these methods are: Burrow-Wheeler-Transform
(bwt), Delta difference (diff), Huffman encoding (huff), Range
encoding (range), Move-To-Front (mtf), and Run-length En-
coding (rle). These encoding schemes are applied to the LZC
and FOC. This experiment was conducted using the climate
simulation output. The results3 are shown in Table II.

The BWT transformation coupled with Range Encoding
performs best regarding LZC. Regarding FOC it performs

3For reasons of brevity, we only show the results for temperature. While
the actual values are different for each climate variable, the performance is
similar for each climate variable
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only third behind BWT+Huffman Encoding and Huffman
Encoding, alone.

Huffman Encoding (without any transformation steps) per-
forms best regarding FOC. This is due to the small value
range of FOC. The downside of Huffman Encoding is that
the codelist used for encoding the data must be transferred
to the decompresser. There is no such a necessity for Range
Encoding.

Observation 5: The BWT algorithm coupled with Range
Encoding outperforms all other combinations of encoding
methods. While BWT+Range Encoding is not optimal re-
garding FOC encoding, it still reaches third place. Regarding
the added value of using a single encoding process for both
components FOC and LZC, choosing BWT+Range Encoding
is the most reasonable choice.

E. Comparison of pzip and fpzip

In the following section we will compare our proposed
algorithm with fpzip. The results are depicted in Table III.
This experiment was conducted using the climate simulation
output.

As can be seen from the table, our proposed algorithm
outperforms fpzip in almost every case. The only exception
is Cloud water, where pzip achieves a CF of 67.59 and
fpzip 73.28. While there could be many reasons for this, we
observed that the Cloud water data have a lot of fill values.
Due to the encoding scheme used by fpzip, it can compress
exact predictions better than pzip. Future research might try
to determine whether an alternative scheme should be used in
such a case. In every other case pzip outperforms fpzip
by eight percent on average. The performance for cloud
ice content should also be emphasized. Here, our proposed
algorithm achieves an improvement of 36.9%.

While the compression factor is better, the throughput of
fpzip can not be achieved with the current implementation.

TABLE II
FILESIZE OF TEMPERATURE DATA AFTER TRANSFORMATION AND

ENCODING SCHEMES. THE VALUES ARE IN BYTES. THE ABBREVIATIONS
ARE: BURROW-WHEELER-TRANSFORM (BWT), DELTA DIFFERENCE
(DIFF), HUFFMAN ENCODING (HUFF), RANGE ENCODING (RANGE),

MOVE-TO-FRONT (MTF), RUN-LENGTH ENCODING (RLE). THE BEST
PERFORMING ENCODING METHOD FOR EACH CATEGORY IS HIGHLIGHTED.

Transformation and
Encoding Methods FOC LZC

bwt diff huff 29 715 223 41 347 759

bwt diff range 30 187 482 35 727 381

bwt huff 21 625 804 50 204 194

bwt mtf diff huff 32 046 132 45 767 747

bwt mtf diff range 32 531 946 40 367 196

bwt mtf huff 25 382 523 37 223 861

bwt mtf range 25 958 407 32 657 611

bwt mtf rle diff huff 44 054 552 50 393 489

bwt mtf rle diff range 44 836 681 50 698 553

bwt mtf rle huff 32 794 335 38 277 196

bwt mtf rle range 33 716 265 38 402 906

bwt range 22 043 891 28 862 090

diff huff 29 451 797 37 695 831

diff range 29 720 133 36 274 895

huff 21 625 389 50 203 689

mtf diff huff 31 908 557 46 008 528

mtf diff range 32 408 277 44 602 439

mtf huff 25 374 374 35 935 034

mtf range 25 782 694 34 990 704

mtf rle diff huff 43 577 596 51 026 248

mtf rle diff range 44 320 799 51 588 757

mtf rle huff 32 380 683 38 119 328

mtf rle range 33 313 109 38 667 389

range 22 489 931 42 918 321



TABLE III
COMPRESSION FACTOR (CF) AND THROUGHPUT [MIB/S] OF CLIMATE SIMULATION OUTPUT USING THE PROPOSED ALGORITHM PZIP AND FPZIP

(HIGHER IS BETTER).

Compression factor Throughput [MiB/s]

Climate variable fpzip pzip change [%] fpzip pzip change [factor]

Geopotential 9.96 11.36 +14.0 125.68± 2.28 35.13± 0.20 3.58

Vertical velocity 2.04 2.22 +8.8 60.31± 0.63 9.25± 0.15 6.52

Potential vorticity 2.24 2.42 +8.0 67.12± 1.40 9.94± 0.11 6.75

Cloud water 73.28 67.59 −7.8 211.53± 7.97 57.40± 0.52 3.69

Cloud ice content 2.87 3.93 +36.9 84.84± 0.46 16.88± 0.19 5.03

Specific humidity 2.60 2.78 +6.9 67.62± 1.79 10.88± 0.12 6.21

Temperature 3.23 3.48 +7.7 75.14± 1.09 12.35± 0.16 5.87

Virtual Temperature 3.23 3.48 +7.7 71.42± 0.96 12.16± 0.19 5.87

Zonal wind 2.23 2.37 +6.3 61.73± 0.99 9.50± 0.12 6.50

Vorticity 2.02 2.17 +7.4 60.33± 1.13 9.30± 0.10 6.48

Meridional wind 1.99 2.18 +9.5 59.88± 1.75 9.13± 0.14 6.56

∅ Average +9.6 5.73
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Fig. 7. Time spend in each step of the compression algorithm.

On average the pzip implementation is about six times slower
than fpzip. To analyse this behaviour we timed each step
of pzip. The result is depicted in Fig. 7. The majority of
the time is spend in the encoding step. This is due to the
memory space needed by BWT. While the time complexity
of both algorithms are the same, the memory consumption is
different. The currently known best implementation of BWT
has a memory and time complexity of O(n). Because of this
the implementation can not use the L1, L2 and L3 caches of
the CPU as effectively as fpzip. Due to cache-misses the
throughput decreases.

Observation 6: The compression factor of pzip is in most
cases around 9% better than fpzip and other state-of-the-art
lossless compression algorithms for real-world climate data.
The BWT transformation is the most time consuming task.
More research is needed to optimize this step of the algorithm.

VI. SUMMARY AND OUTLOOK

In this work we analysed different schemes in lossless
compression algorithms for scientific data. We showed that

shifting the prediction and true value before calculating the
residual results in a better compression factor with minimal
additional computational costs. This gain allows the use of
less sophisticated prediction algorithms for higher throughput.

Our results show that the compression performance is de-
pendent on the value range covered by the data and its distribu-
tion. The shifted XOR calculation bypasses the disadvantages
of the XOR calculation by moving the data to a different
value range. Using XOR for residual calculation, results into
a skewed distribution of set and unset bits. This non-uniform
distribution suggests, that there is still information contained
in the residual. By splitting the residual into LZC, FOC and
the remaining residual, a decorrelation of this information is
achieved.

Our proposed encoding scheme outperforms the current
state-of-the-art scheme by on average 9% regarding the com-
pression factor. The time complexity of fpzip and pzip
are the same, while the memory consumption is higher for
pzip. Therefore further research is necessary to optimize the
memory usage of the algorithm.

Further research is needed regarding special cases such as
the cloud water data, where the data are mostly fill values. It
may be advantageous if such cases are detected early and a
custom solution is applied.

CODE AVAILABILITY

The code of our proposed compression algorithm described
above will be made available under GNU GPLv3 license at
[5].

ACKNOWLEDGEMENT

This work is supported by the Helmholtz Association Ini-
tiative and Networking Fund under project number ZT-I-0003
(Helmholtz Analytics Framework) and the Helmholtz ”Ad-
vanced Earth System Modelling Capacity” (ESM) project.

https://www.helmholtz.de/en/about_us/the_association/initiating_and_networking/
https://www.helmholtz.de/en/about_us/the_association/initiating_and_networking/


REFERENCES
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