13,142 research outputs found

    Scaling of the Thue-Morse diffraction measure

    No full text
    We revisit the well-known and much studied Riesz product representation of the Thue-Morse diffraction measure, which is also the maximal spectral measure for the corresponding dynamical spectrum in the complement of the pure point part. The known scaling relations are summarised, and some new findings are explained

    Timelike self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for timelike self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure

    Mass-metallicity relation from z=5 to the present: Evidence for a transition in the mode of galaxy growth at z=2.6 due to the end of sustained primordial gas infall

    Full text link
    We analyze the redshift evolution of the mass-metallicity relation in a sample of 110 Damped Lyα\alpha absorbers spanning the redshift range z=0.115.06z=0.11-5.06 and find that the zero-point of the correlation changes significantly with redshift. The evolution is such that the zero-point is constant at the early phases of galaxy growth (i.e. no evolution) but then features a sharp break at z=2.6±0.2z=2.6\pm 0.2 with a rapid incline towards lower redshifts such that damped absorbers of identical masses are more metal rich at later times than earlier. The slope of this mass metallicity correlation evolution is 0.35±0.070.35 \pm 0.07 dex per unit redshift. We compare this result to similar studies of the redshift evolution of emission selected galaxy samples and find a remarkable agreement with the slope of the evolution of galaxies of stellar mass log(M/M)8.5(M_{*}/M_\odot) \approx 8.5. This allows us to form an observational tie between damped absorbers and galaxies seen in emission. We use results from simulations to infer the virial mass of the dark matter halo of a typical DLA galaxy and find a ratio (Mvir/M)30(M_{vir}/M_{*}) \approx 30. We compare our results to those of several other studies that have reported strong transition-like events at redshifts around z=2.52.6z=2.5-2.6 and argue that all those observations can be understood as the consequence of a transition from a situation where galaxies were fed more unprocessed infalling gas than they could easily consume to one where they suddenly become infall starved and turn to mainly processing, or re-processing, of previously acquired gas.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Spinorial cohomology and maximally supersymmetric theories

    Full text link
    Fields in supersymmetric gauge theories may be seen as elements in a spinorial cohomology. We elaborate on this subject, specialising to maximally supersymmetric theories, where the superspace Bianchi identities, after suitable conventional constraints are imposed, put the theories on shell. In these cases, the spinorial cohomologies describe in a unified manner gauge transformations, fields and possible deformations of the models, e.g. string-related corrections in an alpha' expansion. Explicit cohomologies are calculated for super-Yang-Mills theory in D=10, for the N=(2,0) tensor multiplet in D=6 and for supergravity in D=11, in the latter case from the point of view of both the super-vielbein and the super-3-form potential. The techniques may shed light on some questions concerning the alpha'-corrected effective theories, and result in better understanding of the role of the 3-form in D=11 supergravity.Comment: 23 pp, plain tex. v2: Minor changes, references adde
    corecore