1,638 research outputs found

    EVALUATION OF DIFFERENT BIOLOGICAL WASTE TREATMENT STRATEGIES

    Get PDF
    Biological treatment of organic waste by aerobic composting and anaerobic digestion (biogas production) was compared with respect to a number of environmental effects and sustainability criterias including energy balance, nutrient recycling, global warming mitigation potential, emission of xenobiotic compounds and economy. The parameters were assessed based on case studies in the literature as well as our own research. Assessment of energy balance, nutrient recycling and global warming came out in favour of biogas production, but especially the results regarding estimation of global warming mitigation differ according to the assumptions made. Our calculations showed that a fugitive loss of approx. 14% of the biogas produced by anaerobic digestion will turn the scale in favour of composting regarding global warming mitigation. In Europe actual biogas losses from 3.5 to 8.4% are reported but this may be exceeded in developing countries. Regarding emission of xenobiotic compounds composting is much in favour, as recent experiments show that a number of organic micro-pollutants are rapidly degraded during composting as opposed to anaerobic treatment. In most cases, composting is more cost-effective compared to biogas production but estimations of actual costs differ considerably. Published results of Life Cycle Assessment of organic waste management using the ORWARE model generally showed biogas production to have less environmental impact than composting, but it was demonstrated that changes in, e.g. system boundaries or functional units can result in substantial differences on the conclusions as well. In conclusion, the optimum waste planning strategy may be the implementation of an integrated waste treatment system operating with different scales of composting and anaerobic treatment, depending on local conditions

    Verifying the mass-metallicity relation in damped Lyman-alpha selected galaxies at 0.1<z<3.2

    Full text link
    A scaling relation has recently been suggested to combine the galaxy mass-metallicity (MZ) relation with metallicities of damped Lyman-alpha systems (DLAs) in quasar spectra. Based on this relation the stellar masses of the absorbing galaxies can be predicted. We test this prediction by measuring the stellar masses of 12 galaxies in confirmed DLA absorber - galaxy pairs in the redshift range 0.1<z<3.2. We find an excellent agreement between the predicted and measured stellar masses over three orders of magnitude, and we determine the average offset C[M/H]\langle C_{[M/H]} \rangle = 0.44+/-0.10 between absorption and emission metallicities. We further test if C[M/H]C_{[M/H]} could depend on the impact parameter and find a correlation at the 5.5sigma level. The impact parameter dependence of the metallicity corresponds to an average metallicity difference of -0.022+/-0.004 dex/kpc. By including this metallicity vs. impact parameter correlation in the prescription instead of C[M/H]C_{[M/H]}, the scatter reduces to 0.39 dex in log M*. We provide a prescription how to calculate the stellar mass (M*,DLA) of the galaxy when both the DLA metallicity and DLA galaxy impact parameter is known. We demonstrate that DLA galaxies follow the MZ relation for luminosity-selected galaxies at z=0.7 and z=2.2 when we include a correction for the correlation between impact parameter and metallicity.Comment: 15 pages, 6 figures. Major revision. Accepted for publication in MNRA

    Consensus report on 25 years of searches for damped Lyα\alpha galaxies in emission: Confirming their metallicity-luminosity relation at z2z \gtrsim 2

    Full text link
    Starting from a summary of detection statistics of our recent X-shooter campaign, we review the major surveys, both space and ground based, for emission counterparts of high-redshift damped Lyα\alpha absorbers (DLAs) carried out since the first detection 25 years ago. We show that the detection rates of all surveys are precisely reproduced by a simple model in which the metallicity and luminosity of the galaxy associated to the DLA follow a relation of the form, MUV=5×([M/H]+0.3)20.8{\rm M_{UV}} = -5 \times \left(\,[{\rm M/H}] + 0.3\, \right) - 20.8, and the DLA cross-section follows a relation of the form σDLAL0.8\sigma_{DLA} \propto L^{0.8}. Specifically, our spectroscopic campaign consists of 11 DLAs preselected based on their equivalent width of SiII λ1526\lambda1526 to have a metallicity higher than [Si/H] > -1. The targets have been observed with the X-shooter spectrograph at the Very Large Telescope to search for emission lines around the quasars. We observe a high detection rate of 64% (7/11), significantly higher than the typical \sim10% for random, HI-selected DLA samples. We use the aforementioned model, to simulate the results of our survey together with a range of previous surveys: spectral stacking, direct imaging (using the `double DLA' technique), long-slit spectroscopy, and integral field spectroscopy. Based on our model results, we are able to reconcile all results. Some tension is observed between model and data when looking at predictions of Lyα\alpha emission for individual targets. However, the object to object variations are most likely a result of the significant scatter in the underlying scaling relations as well as uncertainties in the amount of dust which affects the emission.Comment: 25 pages (7 of which in appendix), accepted for publication in MNRA

    Can on-farm bioenergy production make organic farming more sustainable? - A model for energy balance, nitrogen losses, and green house gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated bioenergy production

    Get PDF
    Can biogas and bioethanol production make organic farming more sustainable? - Results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas and bioethanol production. Dalgaard T1, Pugesgaard S1, Jørgensen U1, Olesen JE1, Møller HB1 and Jensen ES2 1) Dept. Agroecology and Environment. Faculty of Agricultural Sciences (DJF), University of Aarhus. DK-8830 Tjele. Denmark. Contact: [email protected] 2) Biosystems Department, Risø DTU, The National Laboratory for Sustainable Energy, The Technical University of Denmark DK-4000 Roskilde, Denmark The vision of organic farming systems, independent of fossil energy resources, with significantly lower nutrient losses, and no net contribution to the greenhouse gas emissions might be fulfilled via the integration of biogas production. This is an important hypothesis investigated in the www.bioconcens.elr.dk/uk/ research project. This poster illustrates preliminary results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas production in Denmark. The model will draw on results from previous models (e.g the farmGHG model), and includes a number of organic dairy farm type components, including information on livestock production, housing, manure storage, manure and fodder import/export, crop rotations, yield levels, and soil types. In addition, a biogas plant model component evaluates effects of the inclusion of variable amounts of manures and crop residues from the specified farm types, into the biogas energy production. The model is intended to result in an overall catchment balance for the following three types of indicators: 1) the fossil energy use – i.e. the net fossil energy use minus the bioenergy production, 2) losses of Nitrogen in the form of nitrates, ammonia and nitrous oxide, and 3) the emission of the three main greenhouse gasses from agriculture: carbon dioxide, nitrous oxide and methane, measured in carbon dioxide equivalents. Moreover, these indicator values are specified for each of the farm types included in the model, and for the biogas plant component. Finally, selected model results are discussed in relation to the overall hypothesis of the research project, and it is discussed how the integration of biogas production in organic farming, can help to improve the self-sufficiency in Nitrogen, and thereby reduce the import of nutrients to the organic farming systems

    New search strategy for high z intervening absorbers: GRB021004, a pilot study

    Full text link
    We present near-infrared narrow- and broad-band imaging of the field of GRB021004, performed with ISAAC on the UT1 of the ESO Very Large Telescope. The narrow-band filters were chosen to match prominent emission lines at the redshift of the absorption-line systems found against the early-time afterglow of GRB021004: [OIII] at z=1.38 and Halpha at z=1.60, respectively. For the z=1.38 system we find an emission-line source at an impact parameter of 16", which is somewhat larger than the typical impact parameters of a sample of MgII absorbers at redshifts around unity. Assuming that this tentative redshift-identification is correct, the star formation rate of the galaxy is 13 +- 2 Msun/year. Our study reaches star-formation rate limits (5 sigma) of 5.7 Msun/year at z=1.38, and 7.7 Msun/year at z=1.60. These limits correspond to a depth of roughly 0.13 L*. Any galaxy counterpart of the absorbers nearer to the line of sight either has to be fainter than this limit or not be an emission-line source.Comment: 4 pages, 3 figures, accepted for publication in A&A letter

    The Optically Unbiased GRB Host (TOUGH) survey. IV. Lyman-alpha emitters

    Full text link
    We report the results of a spectroscopic search for Lyman-alpha emission from gamma-ray burst host galaxies. Based on the well-defined TOUGH sample of 69 X-ray selected Swift GRBs, we have targeted the hosts of a subsample of 20 GRBs known from afterglow spectroscopy to be in the redshift range 1.8-4.5. We detect Lya emission from 7 out of the 20 hosts, with the typical limiting 3sigma line flux being 8E-18 erg/cm2/s, corresponding to a Lya luminosity of 6E41 erg/s at z=3. The Lya luminosities for the 7 hosts in which we detect Lya emission are in the range (0.6-2.3)E42 erg/s corresponding to star-formation rates of 0.6-2.1 Msun/yr (not corrected for extinction). The rest-frame Lya equivalent widths (EWs) for the 7 hosts are in the range 9-40A. For 6 of the 13 hosts for which Lya is not detected we place fairly strong 3sigma upper limits on the EW (<20A), while for others the EW is either unconstrained or has a less constraining upper limit. We find that the distribution of Lya EWs is inconsistent with being drawn from the Lya EW distribution of bright Lyman break galaxies at the 98.3% level, in the sense that the TOUGH hosts on average have larger EWs than bright LBGs. We can exclude an early indication, based on a smaller, heterogeneous sample of pre-Swift GRB hosts, that all GRB hosts are Lya emitters. We find that the TOUGH hosts on average have lower EWs than the pre-Swift GRB hosts, but the two samples are only inconsistent at the 92% level. The velocity centroid of the Lya line is redshifted by 200-700 km/s with respect to the systemic velocity, similar to what is seen for LBGs, possibly indicating star-formation driven outflows from the host galaxies. There seems to be a trend between the Lya EW and the optical to X-ray spectral index of the afterglow (beta_OX), hinting that dust plays a role in the observed strength and even presence of Lya emission. [ABRIDGED]Comment: ApJ accepted (v2: minor changes in the Subject headings and reference list

    On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    Full text link
    We analyze a sample of 16 absorption systems intrinsic to long duration GRB host galaxies at z2z \gtrsim 2 for which the metallicities are known. We compare the relation between the metallicity and cold gas velocity width for this sample to that of the QSO-DLAs, and find complete agreement. We then compare the redshift evolution of the mass-metallicity relation of our sample to that of QSO-DLAs and find that also GRB hosts favour a late onset of this evolution, around a redshift of 2.6\approx 2.6. We compute predicted stellar masses for the GRB host galaxies using the prescription determined from QSO-DLA samples and compare the measured stellar masses for the four hosts where stellar masses have been determined from SED fits. We find excellent agreement and conclude that, on basis of all available data and tests, long duration GRB-DLA hosts and intervening QSO-DLAs are consistent with being drawn from the same underlying population. GRB host galaxies and QSO-DLAs are found to have different impact parameter distributions and we briefly discuss how this may affect statistical samples. The impact parameter distribution has two effects. First any metallicity gradient will shift the measured metallicity away from the metallicity in the centre of the galaxy, second the path of the sightline through different parts of the potential well of the dark matter halo will cause different velocity fields to be sampled. We report evidence suggesting that this second effect may have been detected.Comment: 11 pages, 6 figures, 6 tables. Accepted for publication in MNRAS Main Journal. For the definitive version visit http://mnras.oxfordjournals.org

    Detection of a redshift 3.04 filament

    Get PDF
    The filamentary structure of the early universe has until now only been seen in numerical simulations. Despite this lack of direct observational evidence, the prediction of early filamentary structure formation in a Cold Dark Matter dominated universe has become a paradigm for our understanding of galaxy assembly at high redshifts. Clearly observational confirmation is required. Lyman Break galaxies are too rare to be used as tracers of filaments and we argue that to map out filaments in the high z universe, one will need to identify classes of objects fainter than those currently accessible via the Lyman Break technique. Objects selected via their Ly-alpha emission, and/or as DLA absorbers, populate the faintest accessible part of the high redshift galaxy luminosity function, and as such make up good candidates for objects which will map out high redshift filaments. Here we present the first direct detection of a filament (at z=3.04) mapped by those classes of objects. The observations are the deepest yet to have been done in Ly-alpha imaging at high redshift, and they reveal a single string of proto-galaxies spanning about 5 Mpc (20 Mpc comoving). Expanding the cosmological test proposed by Alcock & Paczynski (1979), we outline how observations of this type can be used to determine Omega_Lambda at z=3.Comment: 5 pages, LaTeX, 3 PostScript figures; Accepted for publication in A&A-Letter

    Deep imaging of Q2112+059: A bright host galaxy but no DLA absorber

    Full text link
    In a ongoing programme aimed at studying galaxy counterparts of Damped Ly-alpha Absorbers (DLAs) we have obtained high resolution deep I-band imaging data of the field around the z_em = 0.457 BAL QSO Q2112+059. In the literature this QSO is listed to have a candidate DLA at z_abs = 0.2039 along the line of sight. After subtraction of the QSO Point Spread Function (PSF) we detect a galaxy centred on the position of Q2112+059. To help answer whether this galaxy is the DLA or the QSO host galaxy we retrieved a GHRS spectrum of Q2112+059 from the HST-archive. This spectrum shows that there is no Ly-alpha absorption line at z_abs = 0.2039. This fact in combination with the perfect alignment on the sky of the galaxy and Q2112+059 lead us to the conclusion that the galaxy must be the host galaxy of Q2112+059. The host galaxy of Q2112+059 is bright (M_I^obs = -23.6), and has a radial profile well fitted by a {\it modified Hubble + de Vaucouleurs} profile with R_c = 0.5 kpc and R_e = 3.6 kpc. Our results are well in line with the conclusion of earlier work done at lower redshifts, that bright low redshift QSOs preferentially reside in luminous, elliptical galaxies. The host of Q2112+059 is however, despite it's brightness, very compact when compared to early type galaxies at lower redshifts.Comment: 6 pages, 5 figures. Accepted for publication in A&
    corecore