95 research outputs found
Summertime winds and direct cyclonic circulation: observations from Lake Geneva
International audienceRecords of wind, air temperature and air pressure from nine stations, situated along the shoreline of Lake Geneva, Switzerland, were analyzed for the summer period May to September. At all stations the consistent appearance of significant spectral peaks and changes in wind direction at the diurnal frequency indicates the importance of lake-land breezes. It is shown that the surrounding topography has a strong modifying effect (temporal and spatial) on the lake-land breeze. Superimposed on this cyclic wind pattern, short episodes of strong winds with long fetch over parts of Lake Geneva are regularly observed. Both of these winds exert a spatially variable wind stress over the lake surface on the same time scale. Typical examples of the expected lake's response are presented, among them the seasonally persistent gyre in the central part of the lake. Evidence is provided that this dominant circulation is part of a direct cyclonic circulation, generated by the curl of the diurnal wind field. It is concluded that the mean circulation is caused by these winds and affected by the topography of the surrounding land
Aspects of turbulence and fine sediment resuspension in accelerating and decelerating open-channel flow
River hydrodynamicsTurbulent open channel flow and transport phenomen
Internal waves and temperature fronts on slopes
International audienceTime series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a) instabilities advected by the flow (b) internal waves propagating along-slope or (c) internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c), evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles
Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S)
Acoustic Doppler velocity profiler (ADVP) measurements of instantaneous three-dimensional velocity profiles over the entire turbulent boundary layer height, ÎŽ, of rough-bed open-channel flows at moderate Reynolds numbers show the presence of large scale coherent shear stress structures (called LC3S herein) in the zones of uniformly retarded streamwise momentum. LC3S events over streamwise distances of several boundary layer thicknesses dominate the mean shear dynamics. Polymodal histograms of short streamwise velocity samples confirm the subdivision of uniform streamwise momentum into three zones also observed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, p. 1). The mean streamwise dimension of the zones varies between 1ÎŽ and 2.5ÎŽ. In the intermediate region (0.2<z/ÎŽ<0.75), the contribution of conditionally sampled u'w' events to the mean vertical turbulent kinetic energy (TKE) flux as a function of threshold level H is found to be generated by LC3S events above a critical threshold level Hmax for which the ascendant net momentum flux between LC3S of ejection and sweep types is maximal. The vertical profile of Hmax is nearly constant over the intermediate region, with a value of 5 independent of the flow conditions. Very good agreement is found for all flow conditions including the free-stream shear flows studied in Adrian et al. (2000). If normalized by the squared bed friction velocity, the ascendant net momentum flux containing 90% of the mean TKE flux is equal to 20% of the shear stress due to bed friction. In the intermediate region this value is nearly constant for all flow conditions investigated herein. It can be deduced that free-surface turbulence in open-channel flows originates from processes driven by LC3S, associated with the zonal organization of streamwise momentum. The good agreement with mean quadrant distribution results in the literature implies that LC3S identified in this study are common features in the outer region of shear flow
Near-field flow structure of a confined wall jet on flat and concave rough walls
Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment erosion, also referred to as scouring. The measurements were made with an acoustic profiler that gives access to the three components of the instantaneous velocities. For the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima of the Reynolds stresses approach the values accepted for the far field of a wall jet at a downstream distance x/b0 â 8. These maxima are only about half the values of a plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer region, x/b0 11, the maximum Reynolds shear stress approaches the value of a plane free jet. This change in Reynolds stresses is related to the mean vertical velocity that is negative for x/b0 < 8 and positive further downstream. The evolution of the inner region of the wall jet is found to be in good agreement with a previous model that explicitly includes the roughness length. On the concave wall, the mean flow and the Reynolds stresses are drastically changed by the adverse pressure gradient and especially by the development of Görtler vortices. On the downslope side of the scour hole, the flow is nearly separating with the wall shear stress tending to zero, whereas on the upslope side, the wall-friction coefficient is increased by a factor of about two by Görtler vortices. These vortices extend well into the outer layer and, just above the wall, cause a substantial increase in Reynolds shear stres
Double-average methodology applied to turbulent gravel-bed river flows
River hydrodynamicsTurbulent open channel flow and transport phenomen
Near-field flow structure of a confined wall jet on flat and concave rough walls
Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment erosion, also referred to as scouring. The measurements were made with an acoustic profiler that gives access to the three components of the instantaneous velocities. For the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima of the Reynolds stresses approach the values accepted for the far field of a wall jet at a downstream distance . These maxima are only about half the values of a plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer region, , the maximum Reynolds shear stress approaches the value of a plane free jet. This change in Reynolds stresses is related to the mean vertical velocity that is negative for and positive further downstream. The evolution of the inner region of the wall jet is found to be in good agreement with a previous model that explicitly includes the roughness length.On the concave wall, the mean flow and the Reynolds stresses are drastically changed by the adverse pressure gradient and especially by the development of Görtler vortices. On the downslope side of the scour hole, the flow is nearly separating with the wall shear stress tending to zero, whereas on the upslope side, the wall-friction coefficient is increased by a factor of about two by Görtler vortices. These vortices extend well into the outer layer and, just above the wall, cause a substantial increase in Reynolds shear stress
Turbulent transport in the outer region of rough-wall open-channel flows : the contribution of large coherent shear stress structures (LC3S)
Author Posting. © Cambridge University Press, 2007. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 574 (2007): 465-493, doi:10.1017/S0022112006004216.Acoustic Doppler velocity profiler (ADVP) measurements of instantaneous three-dimensional velocity profiles over the entire turbulent boundary layer height, Ύ, of rough-bed open-channel flows at moderate Reynolds numbers show the presence of large scale coherent shear stress structures (called LC3S herein) in the zones of uniformly retarded streamwise momentum. LC3S events over streamwise distances of several boundary layer thicknesses dominate the mean shear dynamics. Polymodal histograms of short streamwise velocity samples confirm the subdivision of uniform streamwise momentum into three zones also observed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, p. 1). The mean streamwise dimension of the zones varies between 1Ύ and 2.5Ύ. In the intermediate region (0.2<z/Ύ<0.75), the contribution of conditionally sampled u'w' events to the mean vertical turbulent kinetic energy (TKE) flux as a function of threshold level H is found to be generated by LC3S events above a critical threshold level Hmax for which the ascendant net momentum flux between LC3S of ejection and sweep types is maximal. The vertical profile of Hmax is nearly constant over the intermediate region, with a value of 5 independent of the flow conditions. Very good agreement is found for all flow conditions including the free-stream shear flows studied in Adrian et al. (2000). If normalized by the squared bed friction velocity, the ascendant net momentum flux containing 90% of the mean TKE flux is equal to 20% of the shear stress due to bed friction. In the intermediate region this value is nearly constant for all flow conditions investigated herein. It can be deduced that free-surface turbulence in open-channel flows originates from processes driven by LC3S, associated with the zonal organization of streamwise momentum. The good agreement with mean quadrant distribution results in the literature implies that LC3S identified in this study are common features in the outer region of shear flows.The study was supported by the Swiss National Foundation for Scientific
Research for the experimental part (grant 2100 050739) and the French National
Center for Scientific Research (CNRS) for the data analysis and interpretation
Tracking Lagrangian transport in Lake Geneva: A 3D numerical modeling investigation
Lake Geneva, the largest freshwater lake in Western Europe, is subject to important environmental pressures from its densely populated shores and watershed. To maintain and improve water quality in this lake, as well as in other enclosed or semiâenclosed basins, it is essential to understand and be able to predict how nutrients and pollutants are transported within it. A 3D numerical modeling study of Lagrangian transport in Lake Geneva is presented, showing the dispersion of water (based on tracking inert water particles) inflowing from the lake's main tributary, the RhĂŽne River. The relation between dominant winds, circulation patterns, and transport was analyzed. The results demonstrated that transport within the lake is highly inhomogeneous in space and intermittent in time, because water mass movements are controlled by the windâinduced formation of largeâscale gyres and their subsequent breakdown into smaller ones. Particle spreading was shown to be sensitive to the depth of the initial particle release, and to the mean depth of the particlesâ trajectory. However, several preferential pathways could be identified. Some water particles rapidly (days) traveled across the entire lake, through the nearâshore region in the upper layer, while others remained trapped for months, particularly in the central region of the lake at depth. Deeper particles tended to remain longer in the lake, due to the insulating effect of stratification, bathymetry obstacles, and slower currents at greater depth
- âŠ