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Experimental results are presented of the mean flow and turbulence characteristics in
the near field of a plane wall jet issuing from a nozzle onto flat and concave walls
consisting of fixed sand beds. This is a flow configuration of interest for sediment
erosion, also referred to as scouring. The measurements were made with an acoustic
profiler that gives access to the three components of the instantaneous velocities. For
the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima
of the Reynolds stresses approach the values accepted for the far field of a wall jet at
a downstream distance x/b0 ≈ 8. These maxima are only about half the values of a
plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer
region, x/b0 < 6, where the Reynolds shear stress is about half the value of a free
shear layer. At distances x/b0 > 11, the maximum Reynolds shear stress approaches
the value of a plane free jet. This change in Reynolds stresses is related to the mean
vertical velocity that is negative for x/b0 < 8 and positive further downstream. The
evolution of the inner region of the wall jet is found to be in good agreement with a
previous model that explicitly includes the roughness length.

On the concave wall, the mean flow and the Reynolds stresses are drastically
changed by the adverse pressure gradient and especially by the development of Görtler
vortices. On the downslope side of the scour hole, the flow is nearly separating with
the wall shear stress tending to zero, whereas on the upslope side, the wall-friction
coefficient is increased by a factor of about two by Görtler vortices. These vortices
extend well into the outer layer and, just above the wall, cause a substantial increase
in Reynolds shear stress.

1. Introduction
Wall jets are encountered in aeronautical, industrial and hydraulic applications.

Typical examples in hydraulic engineering are jets issuing from sluice gates and
from dam bottom outlets, and jets used in the dredging of sand in rivers. In these
situations of sediment erosion, it is the near field of the wall jet that is of importance
(Rajaratnam 1981; Hogg, Huppert & Dade 1997; Hopfinger et al. 2004). Aeronautical
and industrial applications, such as film cooling, are mainly concerned with the far
field. Because of the widespread interest in film cooling, most studies of wall jets have
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focused on the far-field flow structure (Launder & Rodi 1983; Wygnanski, Katz &
Horev 1992; George et al. 2000). The experiments of Rajaratnam (1981) cover the
near and far field of a wall jet on a rough wall, but only mean flow quantities have
been measured.

The turbulent wall jet is also of fundamental interest. It is composed of two
interacting flow regions, namely the inner wall-bounded flow and the outer free-shear
flow. Wall friction is important in the inner layer which is similar to a boundary layer,
whereas the outer layer behaves like a plane jet. Abrahamsson, Johansson & Löfdahl
(1994) defined the point of maximum velocity of the wall jet as the limit between
these two flow zones. However, as has been pointed out in most papers on wall jets
(Launder & Rodi 1981), the interaction between the large turbulent scales in the outer
layer and the smaller scales in the wall layer creates a complex flow field that displaces
the position of zero shear stress from the position of maximum velocity (zero mean
velocity gradient) toward the wall. This implies that the energy-containing eddies are
not in equilibrium with the mean flow near the location of the velocity maximum.
Launder & Rodi (1981) presented a detailed review of the topic. Wygnasnski et al.
(1992) investigated the similarity of the far field of a wall jet and George et al. (2000)
developed a general similarity theory.

Erosion prevention aimed at the protection of hydraulic structures in relation
to jet effects is discussed by Mason & Arumugam (1985). Rajaratnam (1981) and
Chatterjee, Ghosh & Chatterjee (1994) showed that a jet issuing onto mobile sediment
beds causes significant erosion immediately downstream of the jet exit. These authors
and others have proposed correlations for the depth of erosion, the scour hole depth,
as a function of the jet characteristics and the bed material. Hogg et al. (1997)
developed a theory of erosion by a wall jet that depends critically on the near-field
turbulence characteristics of a turbulent wall jet on a rough wall. Hogg et al. used a
mass conservation equation and assumed that the critical Shields parameter for flat
beds could be extended to concave beds. Hopfinger et al. (2004, hereinafter referred
to as HKGL) examined in detail the Hogg et al. model and showed that, in fact, the
wall shear stress is likely to be increased by Görtler vortices that develop when the
sediment bed is sufficiently concave and the Görtler number is large. The near stop
in erosion is then a result of upslope transport in the scour hole by the enhanced
erosion potential of the flow owing to Görtler vortices and downslope avalanching.

The question is to what extent do Görtler vortices contribute to the wall shear stress.
Experiments with heat transfer on concave surfaces indicate that the Nusselt number
can increase by 100–150% (Mayle, Blair & Kopper 1979; Floryan 1991). By analogy
between momentum and heat transfer, an increase in heat flux at the wall implies
also an increase in wall shear stress. Barlow & Johnston (1985) reported an increase
in wall shear stress on a concave wall of 40% above the flat-wall value. In general,
longitudinal vortices in a turbulent wall flow affect the wall shear stress. Kravchenko,
Choi & Moin (1993) demonstrated the close correlation between wall shear stress
and near-wall streamwise vortices in turbulent boundary layers and Nino & Garcia
(1996) showed that these near-wall vortices on a loose sediment bed can cause the
sediment to accumulate in the low-speed-streak regions near the wall. Larger-scale
longitudinal vortices in developed turbulent open-channel flow that are related to
corner vortices have a similar effect, but at the scale of the flow depth. However,
these vortices are relatively weak; the secondary flow velocity is about 2% of the
maximum mean velocity (Tamburrino & Gulliver 1999; Albayrak & Lemmin 2007)
and the increase in wall shear stress is at most 10% (Albayrak 2007). As expected, the
wall shear stress is larger in the downwash regions and smaller in the upwash zones
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between the vortices. The strength of Görtler vortices can be an order of magnitude
greater than the streamwise vortices in a straight channel. The simple model used
by HKGL suggests an increase in Reynolds shear stress close to the wall by about
a factor of four to five with respect to a flat wall. Measurements by Kobayashi
& Fujisawa (1983), made in the wall region of a turbulent wall jet on a concave
smooth wall support this model. Because of the rarity of such results, and of the
uncertainty about the contribution of these vortices to the shear stress, it is of interest
to conduct measurements of mean flow and Reynolds stresses in the configuration
used by HKGL. We have conducted such measurements, first on a flat fixed sand bed
and then on a concave fixed sand bed of roughness equal to the mobile sand bed of
HKGL and shape corresponding to the quasi-steady scour-hole shape. Since the flow
is developing, the results obtained on the flat wall are crucial for the interpretation
of the results obtained on the concave wall.

Measurements were made with a three-dimensional acoustic Doppler velocity
profiler (ADVP) for flow conditions identical to those of HKGL. This profiler is non-
intrusive, no particles have to be introduced and it has the advantage that the three
components of the instantaneous velocity can be measured rapidly over the whole
flow depth. The ADVP consists of two independent working subsystems in the
longitudinal and spanwise flow sections, which make a redundant measurement of the
instantaneous vertical velocity field in order to correct the data. Hurther & Lemmin
(2000) demonstrated that the AVDP mean flow and turbulence data compare well
with data obtained by more conventional techniques.

The experimental set-up and procedures are described in § 2. The mean flow field
and turbulence characteristics on the horizontal wall are presented in § 3, including
an analysis of the inner-layer flow development in terms of the scaling proposed by
Hogg et al. (1997). The results on the concave wall are discussed in § 4, emphasizing
the changes with respect to the flat wall. In the Appendix the results on the flat wall
are analysed in terms of the flow over a backward-facing step.

2. Experimental conditions
2.1. Installation

The experiments were conducted in a glass-sided horizontal flume 17 m long, 0.5
m wide and 0.8 m deep. Figure 1 shows the experimental set-up and the definition
of the flow parameters. The upstream and the downstream ends of the flume were
raised in order to create a cavity 0.35 m deep and 3.8 m long that was filled with
uniformly graded sand of mean diameter d50 = 2 mm that is equal to the roughness
length ke used in the theoretical analysis. For the flat-wall experiments (figure 1a) the
surface particles were fixed in place by spraying them with glue in order to create
a fixed-bed section of roughness equivalent to a mobile sand bed. The concave wall
shape (figure 1b) corresponds to the shape that a mobile bed takes owing to scouring
when the depth has reached a quasi-steady state as defined by HKGL. After this
depth was reached, the flow was stopped and, after the water had been drained, the
surface sand particles were fixed in place by spraying them with glue.

The jet issued from a nozzle of b0 = 5 cm underneath a vertical sluice gate located
at Lf = 10 cm upstream of the beginning of the fixed sand beds. A constant water
discharge, Q, was maintained by controlling �h = h1 −h2. The upstream water depth
h1 was kept constant during the experiments by an overflow gate, and the downstream
water depth h2 was controlled by adjusting a gate at the downstream end of the flume.
The channel has a zero slope angle.
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Figure 1. Schematic of the plane wall jet and of the downstream fixed beds. (a) Flat wall
with definitions of flow variables, and (b) concave wall shape of depth h(x) and maximum
depth, hm = 6.4 cm, at downstream position x ′

m = 15 cm; x ′
b = 30 cm is the position of the

zero z level crossing; hc = −7.3 cm is the downstream hill height at x ′
c = 43 cm. R = 20.5 cm

is the radius of the curvature of the concave wall starting at x = Lf = 10 cm downstream of
sluice gate; x ′ = x − Lf . The origin of z′ is at the scour hole boundary with z′ = z + h(x).

Experiments were conducted with a difference in upstream and downstream water
levels, respectively h1 = 24.7 cm and h2 = 22.1 cm, of �h = h1 − h2 = 2.6 cm, giving
a nominal nozzle inlet velocity U0 =

√
2g�h = 0.71 m s−1. The Reynolds number is

Re = U0b0/ν = 3.53 × 104 and the Froude number is Fr = U0/
√

gb0 = 1.014. Table 1
gives a summary of the flow conditions. The origins of z on the flat wall and z′ on
the concave wall are taken at the top of the sand grains. The experimental conditions
of the flow over the concave wall are identical to those defined in HKGL. The sand
roughness is ke = d50 = 2 mm.

2.2. Velocity measurements

The mean and turbulent velocities were measured with the three-dimensional ADVP,
developed at the Environmental Hydraulics Laboratory (LHE) at the EPFL. This
instrument measures the quasi-instantaneous velocity vector at a large number of
points within the water column. Its space and time resolution are, respectively, 3 mm
and about 0.032 s. This is sufficient for determining the turbulent quantities with
good accuracy relatively close to the wall. A detailed description of the ADVP
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h1 h2 �h R GT Görtler T U0

Test (cm) (cm) (cm) (cm) number (s) (cm s−1) Re =
U0b0

ν
Fr =

U0√
gb0

Flat wall 24.7 22.1 2.6 – – 180 71 3.35 × 104 1.014
Concave wall 24.7 22.1 2.6 20.5 2.86 180 71 3.35 × 104 1.014

Table 1. Test conditions for flat and concave boundaries. The Görtler number is defined by
GT = 31

√
θ/R where θ is the momentum thickness of the boundary layer (HKGL). T is the

measuring time.

system is given by Lhermitte & Lemmin (1994) and Rolland & Lemmin (1997).
The acoustic profiler makes use of the backscattering echo of an ultrasonic pulse
produced by moving micro contaminants present in the water. The Doppler frequency
shift observed between the emitted and the received signal is proportional to the
fluid particle velocity and its direction. For the present measurements, a multistatic
configuration of the ADVP was used, consisting of four receivers that surround
the emitter, providing one redundancy in the three-dimensional velocity component
calculation. This redundancy eliminates the signal noise and improves the data quality
(Hurther & Lemmin 2000). Pulse repetition frequencies (PRF) of 1667 Hz and 1111
Hz, with a number of pulse pairs (NPP) equal to 32 were used, which results in
velocity data acquisition frequencies of 52 and 35 Hz, respectively. At each measured
profile, data were collected for about 3 min. Even though a low degree of aliasing was
expected, a dealiasing algorithm (Franca & Lemmin 2006) was applied. Measurements
were made for the whole longitudinal range and the whole depth, with a spatial
resolution of 3 mm. All measurements were made at the centre of the channel. Owing
to the interference of the ADVP housing with the sluice gate, the measurements were
started at a distance of 19.75 cm from the gate.

On a mobile sediment bed with erosion, turbulence measurements with the ADVP
in the wall region are not reliable because the moving sand grains are seen by the
ADVP as obstacles and create fixed echoes in the signal. This results in bad quality
turbulence data.

2.3. Wall shear stress measurements

Wall shear stress measurements were conducted with a sensor developed at the LHE
(Shen, Song & Lemmin 1996). It is based on the hot-film principle and has constant
sensitivity in variable-temperature flow. The hot-film element is mounted flush with the
top of the fixed sand grains. The voltage required to maintain a constant temperature
of the thermal element is related to the wall shear stress τb = μ(∂U/∂z)|z=0 in the
form,

τ
1/2
b = AE2 + B, (1)

where τb is the wall shear stress, A and B are constants which have to be found by
calibrating the hot-film probe, and E is the voltage required to maintain constant
temperature. Using (1), the mean wall shear stress was measured at several streamwise
positions. The error in the wall shear stress measured with the hot-film probe is larger
on a rough wall than on a smooth wall. From calibrations in a straight channel, the
error in shear stress on the rough wall was evaluated to be ±5%.
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Profile number  1  2   3    4     5    6     7          8           9

z
b0

         10                                 11                  12

 50 cm s–1

0

4

3

2

1

0

3.81 5.75 7.75 9.75 11.75 13.75 16

x/b0

18 18.75 20 22 23.75 32 33.752

Figure 2. Mean velocity vectors in the (x, z)-plane. The position x = 0 is at the sluice gate
and the sand roughness starts at x/b0 = 2. For clarity, profiles 2, 4 and 6 have been omitted.

The dashed line delineates backflow. The velocity scale on the left shows
√

U 2 + W 2.

3. Flow characteristics on the flat wall
3.1. Evolution of mean flow quantities

Figure 2 shows the mean velocity vectors in the (x, z)-plane at the centre of the channel
at nine downstream positions, starting at x/b0 = 3.81 and ending at x/b0 = 33.75.
These mean velocity vectors have been obtained from the instantaneous, three-
dimensional ADVP signals.

The streamwise maximum velocity Um is larger than U0, when x/b0 < 8, indicating
that just downstream of the sluice gate a favourable pressure gradient exists that is
related to the return flow. This is clearly seen in figure 3 where Um/U0 is plotted as
a function of x/b0 together with the spatial growth of the outer layer, characterized
by the position z1/2, which is defined to be the position at which U = Um/2. For
x/b0 < 5, the ratio between maximum streamwise velocity and nominal nozzle or
sluice gate velocity is Um/U0

∼= 1.14. The velocity maximum Um starts to decay
when x/b0 > 6. Momentum conservation gives a variation Um/U0 ∝ (x/b0)

−1/2; this
variation is indicated in figure 3 where the prefactor of 2.7 is close to the prefactor 2.8
determined by Hogg et al. (1997) using Rajaratnam’s (1967) data. As will be shown
below, because of bottom friction, the exponent m < 0.5 in Um ∼ x−m.

The spatial growth rate of the outer layer tends to merge into the value dz1/2/dx =
0.073 that is generally accepted for the growth rate of the far-field outer layer of
a wall jet without external flow (Launder & Rodi 1983). Figure 3 indicates that up
to distance x/b0 ≈ 8 the growth rate of the outer layer is much less. This distance
corresponds roughly to the flow-development region referred to as the potential core
length. By definition, the potential core corresponds to the distance required for
the penetration of the mixing layer from above and the turbulent boundary layer
from below over the initial jet width b0. When taking a mixing-layer growth of
δ/x ≈ 0.17 and a rough-wall boundary-layer growth δb ≈ 0.4x(U0x/ν)−1/5, we obtain
the expression (0.085x + 0.03x)/b0 ≈ 1, giving a value x/b0 ≈ 8 for the potential
core length. This estimated length can be reduced if the thickness of the turbulent
boundary layer is increased by adding an initial thickness at the nozzle. By the same
reasoning, the potential core length of a plane free jet issuing from a nozzle of width
b0 is given by the distance where the mixing layers (of growth δ/x ≈ 0.17) merge.
This gives x/b0 ≈ 6, as is observed in the experiments.

Concerning the position of the velocity maximum with respect to the wall, the
present data are best fitted by δ/b0

∼= 0.024x/b0 +0.13. The virtual origin is, therefore,
at x0

∼= −5.4b0 so that δ/b0
∼= 0.024(x − x0)/b0. Note that when no adjustment is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

14
44

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
5:

40
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112008001444
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Near-field flow structure of a confined wall jet 33

 

 

0.4

0.8

1.2

1.6

2.0

0 2 4 6 8 10 12 14 16 18
0

0.5

0.75

1

1.25

1.5

0.25

x / b0

z 1
/2

 / 
b 0

, δ
/b

0

U
m

 / 
U

0

Figure 3. Variation of dimensionless mean velocity, Um/U0, and spatial growths rates of
the outer layer, z1/2/b0, and inner layer, δ/b0, with downstream distance x/b0. �, Um/U0;

�, z1/2/b0; �, δ/b0; ——, Um/U0 = 2.7(x/b0)
−1/2; - - -, z1/2/b0 = 0.073x + 0.39; — — —,

δ/b0
∼= 0.024x/b0 + 0.13.

made for the virtual origin, the growth of δ has to be fitted by a power law that
accounts for the initial flow-development region (Wygnanski et al. 1992; Hogg et al.
1997). In the linear fit with a virtual origin, the value of 0.024 is smaller by a factor of
two than the prefactor suggested by Hogg et al. (but no virtual origin was included
in their fit), and is larger by a factor of two than the value dδ/dx ∼= 0.012 that holds
for the far-field inner-layer growth rate of a wall jet on a smooth boundary (Launder
& Rodi 1983; George et al. 2000). George et al. showed that dδ/dx ∝ u2

∗/U
2
m = cf /2

in the far-field region of a wall jet, where cf is the skin-friction coefficient that is
a function of Reynolds number Reδ = Umδ/ν. For a fully rough boundary layer of
large Reynolds number, as in the present experiments, the skin friction coefficient
is cf

∼= 0.014 (Grass 1971; HKGL), whereas in the far field region of a wall jet
on a smooth wall cf

∼= 0.007 for Reδ ≈ 104 (George et al. 2000). This difference in
skin-friction coefficient is reflected in the difference in growth rate of the inner layer.

The attachment point of the jet at the free surface is at x/b0 ≈ 23 (figure 2) and
is equal to x/(h2 − b0) ≈ 6.7, a value close to that given for a backward-facing step
at large Reynolds number. Downstream of this point, the velocity profile approaches
the shape of an open-channel flow profile.

The dimensionless longitudinal mean velocity distributions and the mean vertical
velocities are shown in figure 4. Velocities are scaled with the maximum jet velocity
Um and distance from the wall with z1/2, that is the distance from the wall up to where
U = Um/2. There is reasonably good collapse of the longitudinal velocity (figure 4a)
in the lower part of the outer layer. In the upper part, the profiles do not collapse
because of the variable return flow. Close to the wall there is considerable scatter in
the measured velocities. With the acoustic profiler, measurements are accurate to a
distance of 3 mm from the wall which is of the order of the wall roughness.

The vertical mean velocity, shown in figure 4(b), changes from negative values, when
x/b0 < 8, to positive values further downstream. Negative values indicate entrainment
of ambient fluid into the jet. When the vertical velocity is positive, divergence of the
flow dominates over entrainment. At x/b0 = 7.75, the profile shows positive values
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2

(a) (b)

1
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0 0.1 0.2 0.3 0.4–0.1
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z
/z

1/
2

–0.2

Figure 4. (a) Dimensionless mean longitudinal velocity profiles; (b) corresponding
dimensionless vertical mean velocities. �, x/b0 = 3.81; �, x/b0 = 4.75; �, x/b0 = 5.75;
⊲, x/b0 = 7.75; �, x/b0 = 8.75; �, x/b0 = 9.75; ⊳, x/b0 = 11.75; �, x/b0 = 13.75; ∗,
x/b0 = 18.75.

for z/z1/2 < 1 (divergence) and negative values above (entrainment). At x/b0 = 10,
the flow divergence dominates and increases with x/b0. At x/b0 = 18.75, the mean
vertical velocity is very large. Therefore, this profile has not been included in the
mean flow analysis.

3.2. Scaling laws of the inner-layer mean flow evolution

Hogg et al. (1997) introduced scaling laws based on the assumption that the initial
streamwise momentum and the kinematic viscosity are the governing parameters.
For the hydraulically rough wall that is of interest for sediment erosion, Hogg et al.
determined the following power-laws for the evolution of maximum velocity and the
boundary-layer thickness δ (position of velocity maximum):

Um/U0 = C3(x/b0)
−m(b0/ke)

1−2m, (2)

δ/b0 = C4(x/b0)
n(b0/ke)

2(n−1), (3)

where C3 and C4 are constants (the numbering of the coefficients is the same as in Hogg
et al.), ke is the roughness length, proportional to grain size, here ke = d50 = 2 mm.
Hogg et al. determined the constants and exponents from the data of Rajaratnam
(1981). In the fit of (2) and (3) to the present data set shown in figure 5, we excluded
the first two points that fall well within the potential core region. The best fit of
the present data results in exponents m = 0.48 and n = 0.82, which is close to the
values of m = 0.475 ± 0.005 and n = 0.84 ± 0.025 suggested by Hogg et al. (1997).
The constants are C3 = 2.3, which is equal to the value determined by Hogg et al.,
and C4 = 0.19 which is close to their value of 0.2. However, if we use the Hogg et al.
values for m and n (m = 0.47, n = 0.84), the constant C4 reduces to C4 = 0.15. The
variation of Um and δ of the flow on the concave wall, also shown in figure 5, will be
discussed in § 4. The line fitted through the concave wall velocity data in figure 5(a)
(dashed line) has the same exponent, but the constant is C3 = 1.53.
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Figure 5. (a) Variation of scaled maximum velocity, UmkeU0/(b0U
2
0 ) with xb0/k2

e : �, for the

flat wall; �, for the concave wall; and (b) dimensionless boundary-layer thickness δb0/k2
e

as a function of δb0/k2
e ; �, for the flat wall; �, for the concave wall. The two data points

corresponding to x/b0 < 6 were not taken into account in the fitting of the power law.

3.3. Reynolds stresses

In figure 6, the Reynolds stresses are scaled by the square of the maximum velocity
U 2

m. The velocity Us = Um −Ur , where Ur is the return flow caused by the confinement,
could also be used as a characteristic velocity scale and this has been considered.
However, Us is less well defined than Um and is not consistently representative of the
mean shear, because the maximum of the return flow is not located at the same value
of z/z1/2. For this reason, Um was used as characteristic velocity.

It can be seen in figure 6 that the Reynolds stresses exhibit a rapid increase and
change in distribution with downstream distance. Close to the nozzle, the maximum
values would be expected to be bounded by the mixing-layer values and at large
downstream distances, before flow reattachment at x/b0 ≈ 20, by those of a plane
free jet or by the Reynolds stresses in the flow over a backward-facing step. At
intermediate downstream distances, the Reynolds stresses may be similar to those of
a wall jet. For the physical interpretation of the flow development and for the sake
of comparison, it is of interest to show in figure 6, together with the present data,
the Reynolds stress distributions of a turbulent free shear layer and of a plane jet in
addition to the far field of a wall jet. In the Appendix, it is shown that the measured
Reynolds shear stress at x/b0 = 13.75 is in good agreement with the flow over a
backward-facing step.

Figure 6(a) indicates that the maximum Reynolds shear stress in the shear-layer
region x/b0 < 6 is located close to z/z1/2 = 1, and the profile is close to that of a free
shear layer. However, surprisingly at first sight, the maximum value is only half that
of a free shear layer, indicated by the solid-line curve in figure 6(a) taken from Pope
(2000). Further downstream, the shear stress progressively increases and the maximum
value shifts to positions z/z1/2 > 1, whereas in the far field of a turbulent wall jet on
a smooth wall, the position of the maximum shear stress is at z/z1/2 = 0.75 to 0.8 as
indicated by the dashed-line curve (Karlsson, Ericsson & Persson 1992; Zhou, Heine
& Wygnanski 1996); the maximum values are comparable when x/b0 ≈ 8. Only the
position of the maximum is shifted outward. These maximum shear stress values
are almost a factor of two smaller than the value in a free plane jet, as indicated by
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Figure 6. Turbulence quantities shown in terms of outer parameter scaling. (a) Reynolds

shear stress uw/U 2
m; (b) longitudinal normal Reynolds stress u2/U 2

m; (c) spanwise normal

Reynolds stress v2/U 2
m; (d) cross-stream normal Reynolds stress w2/U 2

m. �, x/b0 = 3.81; ∇,
x/b0 = 4.75; �, x/b0 = 7.75; �, x/b0 = 8.75; �, x/b0 = 11.75; �, x/b0 = 13.75; ——, free shear
layer; – – –, plane wall jet; . . . , free plane jet.

the dotted line taken from Pope (2000). Launder & Rodi (1983) mention that the
reason for this lower value of the shear stress in the outer region of a wall jet as
compared to the free plane jet, is probably due to the presence of the wall felt through
pressure effects. The same reasoning can be used to explain the lower shear stress
value in the mixing-layer region mentioned above. When x/b0 > 8, the maximum
shear stress further increases and reaches values comparable to a free plane jet. The
presence of the strong return flow and the associated adverse pressure gradient that
leads to positive mean vertical velocities (figure 4b) are the cause for the shift in the
location and the increase in maximum shear stress compared to a wall jet; the wall
effect on the outer-flow quantities seems to become insignificant when the mean flow
is diverging. At x/b0 = 13.75, the shear stress profile is in good agreement with that
observed in the flow behind a backward-facing step (see Appendix).
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0–0.5–1.0
u w / u' w'
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z
z1/2

Figure 7. Reynolds stress correlation coefficient, uw/u′w′, as a function of dimensionless
distance from the wall. �, x/b0 = 7.75; �, x/b0 = 11.75; �, x/b0 = 13.75.

The profiles of the normal Reynolds stresses, u2/U 2
m, v2/U 2

m and w2/U 2
m, presented

in figures 6(b), (c) and (d), respectively, show a variation similar to the Reynolds
shear stress in the outer layer. The maximum values are again located at positions
z/z1/2 larger than those reported for the far field of a turbulent wall jet on a smooth
boundary, where the maxima are at z/z1/2 ≈ 0.7 to 0.8 (Kobayashi & Fujisawa 1983;
Zhou et al. 1996; Erikson, Karlsson & Persson 1998; George et al. 2000). In the
inner layer, the longitudinal (streamwise) and spanwise normal Reynolds stresses,
respectively u2/U 2

m and v2/U 2
m, have a minimum around or below z/z1/2 = 0.4.

Previous studies (Kobayashi & Fujisawa 1983; Erikson et al. 1998; George et al.
2000) also report clear minima of the longitudinal component in the inner layer.
The cross-stream normal Reynolds stress (figure 6d) has a minimum closer to the
wall at about z/z1/2 = 0.25. The longitudinal normal Reynolds stress profile in the
mixing-layer region, x/b0 < 6, agrees well with the free shear-layer value, whereas the
cross-stream normal Reynolds stress is only about half this value. The lower Reynolds
shear stress is, therefore, due to the damping of the turbulence component normal
to the wall. Relative to the two other components, the maximum of the cross-stream
normal stress component in the free plane jet is large and located very close to the
jet centre. This would indicate some flapping of the free jet that is prevented by the
confinement of the wall jet.

Figure 7 shows the Reynolds stress correlation coefficient uw/u′w′ as a function of
dimensionless distance from the wall (u′ and w′ are the r.m.s. values). In the outer
layer, its value is close to 0.41. This is 20% less than in the outer layer of a developed
wall jet (Zhou et al. 1996). The variation in the wall layer and just above is practically
the same as measured by Zhou et al. (1996). Zero Reynolds stress correlation is at
z/z1/2 ≈ 0.12, which is well below the position of the zero mean velocity gradient.

3.4. Wall shear stress

The integration of the streamwise momentum equation leads to the following
expression for the calculation of the wall shear stress, τb (Hogg et al. 1997):

τb − τz=h = − d

dx

∫ h

0

ρu2dy − �p. (4)
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Figure 8. Dimensional friction velocity u∗ as a function of downstream distance. �, values
measured with hot-film; ∇, from momentum balance.

The integration is from z = 0 to z = h, where h was chosen as the position where the
mean velocity is equal to zero. The derivative of the streamwise component (∂/∂x)
is evaluated between two consecutive profiles in the flow direction. The pressure-
gradient effect is small on a flat wall and has been neglected in (4). As expected, the
wall shear stress decreases with distance from the gate, mainly because Um decreases.

The wall shear stress was also measured with a hot-film probe at several downstream
positions. The friction velocities, u∗ =

√
τb/ρ, measured with the hot-film probe and

the one determined from the momentum balance are given in figure 8. Both follow the
same trend. In accordance with cf = 0.014 for a fully rough wall (§ 3.1), the largest
value of the dimensionless friction velocity is expected to be u∗/Um

∼= 0.084. Close to
the gate the mean velocity is Um = 1.14U0 (figure 3), which gives u∗ ∼= 6.74 cm s−1.
This value is reasonably close to, but larger than, the measured value at x/b0 = 3.81.
The error in wall friction velocity measurements is evaluated to be ±5%. However, the
dispersion in measured friction velocities indicates that the error is likely to be closer
to ±10%. For comparison, it is useful to note that the critical Shields parameter for
incipient motion of loose sand grains of d50 = 2 mm is τ ∗

crit = τb/(ρs −ρ)gd50 = 0.035,
giving τb = 1.13 Nm−2 equal to u∗c

∼= 3.4 cm s−1.
It is of interest here to represent the friction velocity in terms of the scaling proposed

by Hogg et al. that includes dependency on roughness. The expression for u∗ is of the
form

u∗/U0 =
√

C5(b0/ke)
(
xb0/k2

e

)−m+n/2−1/2
. (5)

where C5 is a constant. In figure 9, the ratio u∗ke/U0b0 is plotted versus xb0/k2
e . The

best fit gives C5
∼= 0.13. There is good agreement between the slope of the best-fit

curve and the calculated values obtained from (5), taking m = 0.47 and n = 0.84
as previously determined (§ 3.2). The last two points at x/b0 � 18.75 have not been
taken into account in the least-squares fit, because the velocity profile shape changes
rapidly.

The expression for u∗/Um is readily obtained from (2) and (5):

u∗/Um =

√
C5

C3

(b0/ke)
n−1(x/b0)

n/2−1/2. (6)

This indicates a slow decrease of u∗/Um with downstream distance. Since the Reynolds
number Reδ = Umδ/ν increases as (x/b0)

0.37, the slow decrease in u∗/Um with
downstream distance is consistent with the variation in developed wall jets (George
et al. 2000). Although we treat here the near-field flow structure that does not obey
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Figure 9. Variation of the scaled wall friction velocity versus dimensionless downstream
distance. �, values measured with hot-film; ∇, momentum balance flat boundary; �, values
measured with hot-film on the concave wall. , equation (5) with m = 0.47, n = 0.84 and
C5 = 0.13.

similarity laws, many of the similarity concepts apply to the first order or at least
give a basis for comparison.

4. Flow structure on the concave wall
4.1. Mean flow quantities

The velocity vectors measured along the concave wall of the shape shown in figure 1(b)
are presented in figure 10. These profiles indicate a nearly separated flow on the
downslope side (profile 1, x/b0 = 3.81), whereas at the upslope positions, especially
profiles 3, 4 and 5, the mean shear is increased. When comparing the profiles with
those on the horizontal boundary (figure 2), it can be seen that during the first rapid
scouring phase of a mobile bed as defined by HKGL, the scour-hole length is within
x/b0 � 9. This corresponds to a large portion of the potential core region on the flat
wall. On the concave wall, the potential core is shorter and the velocity maximum
has started to decrease by x/b0 ≈ 4, mainly because of the increase in the flow cross-
section and the associated adverse pressure gradient that causes the flow to nearly
separate in the downslope region (see profile 1, figure 10). At x/b0 = 5, the velocity
ratio is Um/U0

∼= 0.7, compared with Um/U0
∼= 1.14 at the same downstream location

on a flat wall. For x/b0 > 5, the decrease in maximum velocity is approximated
well by (2) with the coefficient C5 ≈ 1.53 instead of C3 = 2.3 for the flat-wall flow
(figure 5a). The position of the velocity maximum with respect to the wall decreases
rather than increases with x/b0. It varies from δ/b0 ≈ 0.8 at x/b0 = 5 to δ/b0 ≈ 0.48
at x/b0 = 9 (figure 5b). This is a consequence of the adverse pressure gradient related
to the geometry.

The image of sediment transport on a mobile bed (figure 11), taken from HKGL,
shows sediment ridges on the upslope side that are a signature of Görtler vortices. The
Görtler number for the flow configuration as shown in figure 11, which corresponds
closely to the present conditions, has been evaluated by HKGL and is about 10 times
the critical value for the instability onset.
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Figure 10. Mean velocity vectors in the (x, z′)-plane on the concave wall. The position x = 0
is at the sluice gate and the zero position of z′ = z + h(x) is at the concave boundary, where
h, a function of x, is measured from the position z = 0 (figure 1b). The dashed line delineates

backflow. The velocity scale on the left shows
√

U 2 + W 2.

x

Figure 11. Image of sediment ridges (oblique, streamwise view of the sediment surface taken
on a loose sediment boundary) caused by Görtler vortices (from HKGL). Note that the
width of the channel is 50 cm and there are at least 7 longitudinal sediment ridges indicating
longitudinal vortical structures of size of about 3 cm. The grid spacing on the wall is 5 cm.

4.2. Instantaneous flow structure and turbulence quantities

Figure 12 shows instantaneous turbulent velocity vectors in the (x, z′)- and the (y, z′)-
planes at x/b0 = 7, measured in the centre of the channel in the time interval
�t = t − t0 = 1.6 s. Within the measurement time of T = 180 s, the time t0 = 40
s was chosen such that upwash regions are emphasized. The Görtler vortices are
unstable and move in a spanwise direction over distances of the order of their size.
This spanwise movement allows us to identify the presence of coherent streamwise
vortex structures by instantaneous velocity recordings in the centre of the channel.
The vortices are about 3 cm and have typically an r.m.s. velocity of 10 cm s−1, giving
an overturning time scale tG ≈ 0.3 s, hence �t/tG ≈ 5. It is, therefore, possible to see
in the time interval of 5tG, a few, but not more than five, vortex signatures (figure 12).
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Figure 12. Two-dimensional turbulent velocity vector plots of profile 4 (x/b0 = 7) measured
at the centre of the channel in the time interval �t = t − t0 = 1.6 s, where t0 = 40 s. Um= 0.527
m s−1 and z′

1/2 = 8.4 cm for profile 4. (a) In the streamwise (x, z′)-plane; (b) in the spanwise

(y, z′-plane).

It should be emphasized that we see only the manifestation of streamwise vortices
and not the vortex pattern because this would require the vortices to have a periodic
spanwise movement over a distance of one wavelength (two vortex diameters); this
is clearly not the case. In figure 12(a), such flow patterns as upwash and downwash
regions in the (x, z′)-plane are presented, together with the Reynolds shear stress
distribution. Upwash events occur at t = 40.10, 40.60 and 41.30 s and can extend
up to nearly z′/z′

1/2 ≈ 1 (at t = 40.60 s). The contribution of upwash events to the
Reynolds shear stress is significant. In the outer layer, the downwash and upwash
flow events are dominant at several locations (for t = 40.30 s at z′/z′

1/2 ≈ 1 and for
t = 41.60 s at z′/z′

1/2 ≈ 0.5). These observations suggest the existence of coherent
vortices aligned with the mean flow and this is clearly demonstrated in figure 12(b)
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Figure 13. Dimensionless Reynolds shear stress profiles on the flat and concave wall at
positions: �, x/b0 = 4.75; �, x/b0 = 7.75, for the flat wall; and �, x/b0= 6; � x/b0 = 8 for
the concave wall. Note that Um is less on the concave wall than on the flat wall.

which shows the instantaneous velocity vectors at different times in the (y, z′)-plane.
The matching between (u, w) and (v, w) flow field patterns is quite remarkable.

In figure 13, the dimensionless Reynolds shear stress distributions on the concave
wall are shown for two upslope flow profiles of downstream locations x/b0 ≈ 6 and
x/b0 ≈ 8. The corresponding Reynolds stress distributions measured on the flat wall
are included for comparison. It can be seen that the Reynolds shear stress values
and profiles are drastically changed by the wall curvature. On the concave wall, the
Reynolds shear stress is negative from the boundary up to z′/z′

1/2
∼= 0.7 where it

changes sign. This is above the position δ/z′
1/2 ≈ 0.5 where the mean velocity gradient

changes sign from positive to negative and is opposite to what is observed for a
wall jet on a flat wall, where zero Reynolds shear stress is below the position of
maximum velocity (on the flat wall h = 0, hence z′ ≡ z). This change in zero shear
stress with respect to zero mean velocity gradient is indicative of the importance of
the large-scale Görtler vortices on the concave wall. The minimum value of the shear
stress (maximum absolute value) is located at z′/z′

1/2 ≈ 0.3 and is uw/U 2
m

∼= 0.25,
which is about four times the shear stress on the flat wall. Unfortunately, very close
to the wall (within about 3 mm above the roughness height) measurements with the
acoustic profiler are not reliable. Nevertheless, the order of magnitude and the sign
variation with z′ are correct, as is indicated by the measurements on the flat wall
shown in figure 6. In the outer layer, above the velocity maximum, the shear stress is
positive. Its value increases considerably with downstream distance from x/b0 = 6 to
x/b0 = 8. The large value at x/b0 = 8 is due to the change in the vertical mean flow
component.

The profiles of the Reynolds stresses, u2/U 2
m and w2/U 2

m, on the flat and concave
wall are compared in figure 14. On the concave wall these longitudinal and cross-
stream normal Reynolds stresses are actually the x and z′ components and are not
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Figure 14. Dimensionless normal Reynolds stress profiles. (a) Longitudinal (x-component)

normal Reynolds stress u2/U 2
m, and (b) cross-stream (z′ component) normal Reynolds stress

w2/U 2
m. �, x/b0 = 6; �, x/b0 = 8, concave wall and �, x/b0 = 4.75; �, x/b0 = 7.75 flat wall.

parallel and perpendicular to the wall. Nevertheless, we refer to these Reynolds stress
components as longitudinal and cross-stream normal Reynolds stresses. Since the
mean flow is not parallel to the wall, it would not make much sense to determine the
stresses parallel and perpendicular to the wall. At x/b0 = 6 for instance, the x and z′

components represent closely the longitudinal and cross-stream components.
In the inner layer, the longitudinal and cross-stream normal Reynolds stresses are

considerably larger on the concave wall. On the flat wall, the maxima of longitudinal
and cross-stream components are at z′/z′

1/2 = 1 (note that on the flat wall h = 0,
hence z′ ≡ z), whereas they are closer to the wall in the flow on the concave wall. The
maximum of the longitudinal Reynolds stress is at z′/z′

1/2 < 0.1 and the cross-stream
Reynolds stress maxima are at z′/z′

1/2 = 0.2 for profile x/b0 = 6 and at z′/z′
1/2 = 0.4

for profile x/b0 = 8. In the outer layer of the concave wall flow, the cross-stream
Reynolds stress for profile x/b0 = 6 is close to values on the flat wall, whereas for
profile x/b0 = 8, the value is 3 times larger. This large value is consistent with the
shear stress and is attributed to the gradient of the mean vertical velocity resulting
in production of cross-stream turbulence. The large values in Reynolds stresses in
the inner layer are a signature of the Görtler vortices. These vortices reach up to
z′/z′

1/2 ≈ 0.7 (figure 12b) and thus cause large velocity fluctuations.
The dimensionless wall friction velocities u∗/Um, measured with the hot-film probe

on the concave wall are plotted in figure 15. The values obtained with the hot-film
probe and from momentum balance on the flat wall are included for comparison.
It can be seen that at x/b0 = 5, the dimensionless friction velocity u∗/Um on the
concave wall is below the value of the flat wall, but it exceeds the value on the
flat wall when x/b0 > 7. This higher dimensionless friction velocity on the concave
wall, when x/b0 > 7, can be attributed to the development of Görtler vortices. When
x/b0 > 9, the friction velocity on the concave wall starts to decrease, because after
that point the boundary slope changes (figure 10) and the Görtler vortices disappear.

The observed wall shear stress on the concave wall does not follow the Hogg et al.
model where it was assumed that the wall shear stress on a mobile bed decreases
as the scour hole deepens. The expression for the bed or wall shear stress in the
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u
∗

Figure 15. Dimensionless friction velocity, u∗/Um, as a function of downstream distance, �

and �, values measured with hot-film probe and obtained from momentum balance on the
flat wall; �, v̇alues measured with hot-film on the concave wall. ——, equation (6) with m=
0.47, n= 0.84, C3 = 1.53 and C5 = 0.13.

Hogg et al. model is

τb = C5ρU 2
0 (b0/ke)

2
(
xb0/k2

e

)
−2m+n−1

G(h, x ′), (7)

where the function G(h, x) = 1 when h = 0 and G(h, x) = exp(−(h/Cδ)2) when h >

0; δ(x) is the boundary-layer thickness, (3), and C is a constant. This Gaussian shape
function allowed the scouring to come to a stop (forcing the wall shear stress to
fall below the critical Shields value) when the scour hole reached the quasi-steady
shape shown in figure 1(b). The present experiments indicate that this is true only for
the downslope-flow region in the scour hole where the flow is nearly separating. At
downstream locations beyond the distance of maximum scour hole depth, at x/b0 > 7,
the wall shear stress τb/ρU 2

0 remains nearly identical to the value on the flat wall
(figure 9) and the dimensionless value u∗/Um actually increases (figure 15).

Since, on the concave wall, the dimensionless friction velocity u∗/Um reaches a value
of about 1.5 times the value on a flat wall, the wall shear stress due to (turbulent)
Görtler vortices increases by a factor of about two. Previous measurements (Barlow &
Johnston 1984) suggest a 40% increase in wall shear stress owing to Görtler vortices
on a concave smooth wall (Floryan 1991). The increase will, of course, depend on
the strength of the Görtler vortices and, to some extent, on whether the wall is rough
or smooth. The interest of the present measurements is to show that the increase in
Reynolds shear stress just above the bed (where our measurements are reliable) is
considerably larger than the increase in wall shear stress (figure 13), thus, significantly
increasing the momentum and scalar or sediment transport capacity.

4.3. Evaluation of the contribution of the Görtler vortices to the shear

HKGL assumed that the shear stress contributions by the shear-generated turbulence
and the turbulence due to the Görtler vortices are additive (as turbulent energies are
additive). The wall shear stress can thus be written in the form

τb = 1
2
ρU 2

m(cf + cf G), (8)

where cf = 0.014 is the friction coefficient on a fully rough wall and cf G is the friction
coefficient of the turbulence of the Görtler vortices. HKGL evaluated the turbulent
Görtler vortex velocity to be uG ≈ 0.25Um (this is consistent with the measurements
shown in figure 14b) and assumed the Görtler shear stress to be τG/ρ ≈ 0.3k where
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k ≈ u2
G is the Görtler vortex kinetic energy. This gives

τG/ρ ≈ 0.019U 2
m. (9)

The maximum Görtler vortex shear stress is thus about 2.7 times the turbulent bed
shear stress, giving a total maximum shear stress of

τ/ρ ≈ 0.007(1 + 2.7)U 2
m. (10)

This is consistent with the measurements (figure 13) and is slightly less than the
evaluation in HKGL where it was assumed that k = 3u2

G/2.

5. Conclusions and further discussion
The mean velocity and Reynolds stress measurements made with the ADVP allowed

us to characterize the complex flow structure of a plane jet issuing from a sluice gate
onto a flat and a concave wall consisting of fixed sand beds of surface roughness
ke = d50 = 2 mm. The flow is strongly confined (h2/b0 = 4) so that in the flat-wall
configuration, the jet flow reattaches at the free surface before it reaches self-similarity.
On the concave wall, self-similarity is not expected.

On the flat wall, the spatial growth rate of the outer layer and the maxima of
the Reynolds stresses approach values accepted for the far field of a wall jet at a
downstream distance x/b0 ≈ 8. These maxima are only about half the values of a free
plane jet and the same reduction is observed in the mixing-layer region, x/b0 < 6,
where the Reynolds shear stress is only about half the value of a free shear layer.
At larger downstream distances, x/b0 > 11, the maximum Reynolds shear stress
approaches maximum values that are comparable with a plane free jet or, more
precisely, comparable with the Reynolds stress distribution in the flow behind a
backward-facing step (see Appendix). This change in the maxima of the Reynolds
stresses is related to the mean vertical velocity that is negative for x/b0 < 8 and
positive beyond. This indicates that when x/b0 < 8, the presence of the wall has a
strong effect even on the outer-layer flow by reducing the normal turbulent fluctuations
through pressure effects. The evolution of the inner region of the wall jet is found to
be in good agreement with the Hogg et al. (1997) model that explicitly includes the
roughness length. The wall shear stress measurements, essential for the evaluation of
erosion capacity, are consistent with this model that predicts a slow decrease in the
dimensionless friction velocity u∗/Um with downstream distance. This happens because
the skin friction coefficient decreases with increasing Reynolds number Reδ = Umδ/ν

(George et al. 2000). As shown in the Appendix, the Reynolds stress distribution at
the downstream location of four step heights is in good agreement with numerical
simulations by Diurno, Balaras & Piomelli (2001). Here, measurements are made
much closer to the step and this could be of interest to modellers.

On the concave wall, the mean flow and the Reynolds stresses are drastically
changed by the adverse pressure gradient and the development of Görtler vortices.
The shape of the concave wall corresponds to the quasi-steady scour-hole shape of a
mobile bed (HKGL). The maximum mean flow velocity decreases rapidly close to the
gate because of the adverse pressure gradient; then, it decreases in a way similar to that
on the flat wall. On the downslope side of the scour hole, the flow is nearly separating
and the wall shear stress tends to zero. On the upslope side, the dimensionless wall
shear stress, proportional to (u∗/Um)2, increases by a factor of about two with respect
to the flat-wall value, owing to the development of Görtler vortices. These vortices
extend well into the outer layer away from the wall. Just above the wall, the absolute
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value of the Reynolds shear stress substantially increases in accordance with the
conjecture of HKGL and changes sign at z′/z′

1/2
∼= 0.7 which is above the position of

the maximum of the mean velocity; that behaviour is opposite to that observed for
the wall jet on a flat wall. This is an indication of the dominant role of large-scale
Görtler vortices in the wall layer. The increase in Reynolds shear stress in the scour
hole increases the sediment transport capacity on a mobile bed. This is opposite to
the Hogg et al. model, where it was assumed that the wall shear stress decreases
in the form of a Gaussian-like shape function as the scour hole deepens and falls
below the erosion value when the scour-hole shape has reached the quasi-steady state.
The present results indicate that the dimensional wall shear stress remains practically
constant and that the dimensionless friction velocity u∗/Um actually increases on the
concave wall. Nevertheless, on a mobile bed, the effective transport goes almost to
zero owing to a near equilibrium between upslope sediment transport and downslope
avalanching when the slope angle exceeds the angle of repose. This can be modelled
by a decreasing effective wall shear stress as the scour-hole depth increases.

The question arises as to whether or not the flow structure, measured on the
concave fixed bed, is representative of the flow field on a mobile bed. As mentioned
in § 2.2, measurements with the ADVP system on a mobile bed are not reliable in
the near-wall region because of the strong backscatter from the large moving and
suspended particles. Most other techniques also fail in sediment-laden flows. The
turbulence characteristics measured on the fixed bed can be considered as upper
bounds on the Reynolds stresses including the Görtler vortices. On a mobile bed, the
Görtler vortices are still present, as is demonstrated by the sediment ridges shown
in figure 11. However, kinetic energy is expended when sediment is moved and lifted
up, and the turbulence intensity near the wall may be reduced. Thus, the turbulence
intensity and Görtler vortex strength are expected to be more intermittent on a mobile
bed with peak values, as measured on the fixed bed, alternating with lower values in
between.

The authors acknowledge the financial support of the Swiss National Science
Foundation (grant 200020-100383). E. J. H. acknowledges a visiting scientist support
grant by ERCOFTAC.

Appendix. Backward-facing-step analysis of the flow on a horizontal wall

The near-field flow structure can be analysed in terms of the scaling of a
backward-facing step. The experimental configuration is shown in figure 16. Here,
the characteristic scale is the step height He = h2 − be, where be is the effective
inflow jet thickness. Flow rate measurements downstream of the reattachment
point at x/b0 > 24, indicate that the inlet flow rate is Q = 300 cm2 s−1 per unit
width. Therefore, the flow contraction of the jet emerging from the sluice gate is
be/b0 = Q/U0b0 ≈ 0.85. The measured effective jet velocity is Ue = 1.14U0.

Figure 16 shows the evolution of the non-dimensional mean velocity profiles at
various downstream locations. Note that with respect to figure 2, the flow has been
turned upside down, so that the flow of thickness be issues above the step of height
He. The lower boundary (that is the free surface) has nearly free-slip conditions. The
zero velocity locations of the different profiles are shifted by U/Ue = 0.5, with the
zero of the last profile being at U/Ue = 3. This representation is the same as in
Diurno et al. (2001). In their study, the reattachment of the flow was emphasized,
whereas here, all the profiles shown are in the backflow region.
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Figure 16. Profiles of mean velocities normalized by Ue . The zero velocity origin of the
different profiles is shifted by U/Ue = 0.5.
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Figure 17. Reynolds shear stress, uw/U 2
e in outer scaling. �, x/b0 = 3.81; ∇, x/b0 = 4.75; �,

x/b0 = 5.75; ⊲, x/b0 = 7.75; ♦, x/b0 = 8.75; ⊳, x/b0 = 11.75, �, x/b0 = 13.75; - - -, data from
Diurno et al. (2001).

Figure 17 shows the Reynolds shear stress normalized by U 2
e . The last profile at

x/He = 3.85, corresponding to x/b0 = 13.75, is close to the profile at x/h = 4.2,
with h ≡ He of Diurno et al. (2001). However, in the present case, there is an upper
cutoff because of the small dimensions of the flow (jet) above the step. The maximum
non-dimensional Reynolds stress at x/He = 3.85 of uw/U 2

e
∼= 0.0011 is practically

identical to the value of Diurno et al., and Eaton & Johnston (1980), in spite of the
decreasing outer-flow velocity Um. The reason for this is that the mean gradient is the
same as in Diurno et al.
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