32 research outputs found

    Lewis acid-induced rearrangment of α-[bis(methylthio)methylene]ethyl-2-styrylcyclopropylcarbinols: unexpected formation of a novel bicyclo[3.2.1]octadiene framework

    Get PDF
    The α-[bis(methylthio)methylene]ethyl-2-styrylcyclopropylcarbinols 9a-c undergo a simple but unexpected skeletal rearrangement in the presence of stannic chloride in nitromethane to afford bicyclo[3.2.1]octadiene derivatives 10a-c exclusively in good yields. The structure of 10a was conclusively elucidated by X-ray diffraction studies. A possible mechanism governing the formation of 10 is proposed

    Heteroaromatic annulation studies on 2-[bis(methylthio)methylene]- 1-methyl-3-oxoindole: synthesis of novel heterocyclo[b] fused indoles

    Get PDF
    Heteroannulation of 2-[Bis(methylthio)methylene]-1-methyl-3-oxoindole with β- substituted β-lithioaminoacrylonitrile, malononitrile and guanidine has been reported to yield novel substituted pyrido[3,2-b]indoles and pyrimido[5,4-b]indole derivatives in varying yields

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A new route to spiropyrrolidinyl-oxindole alkaloids via iodide ion induced rearrangement of [(N-aziridinomethylthio)methylene]-2-oxindoles

    No full text
    A new approach for the synthesis of spiropyrrolidinyloxindole alkaloids, i.e. coerulescine (4) and horsfiline (5) has been developed via iodide ion induced rearrangement of [(N-aziridinomethylthio)methylene]oxindoles 2 to the respective spiropyrroline-2-oxindole derivatives 3 and their subsequent one-pot reductive dethiomethylation-N-methylation

    Benzoannelation of 2-methylindole via 1-N-carboxy-2-methylindole dianion: a direct regiospecific route to substituted and annelated carbazoles

    No full text
    A facile general route for substituted and annelated N-H-carbazoles 6 has been developed by regiospecific 1,2-addition of 1-N-carboxy-2-methylindole dianion 3 to acyclic and cyclic α-oxoketene dithioacetals 4 followed by cycloaromatization in the presence of H3PO4

    Domino carbocationic cyclization of functionalized cyclopropyl ketones: facile one-pot access to peri- and angularly fused polycyclic aromatic and heteroaromatic frameworks

    No full text
    Conjugate adducts obtained by base-induced 1,4-addition-elimination of various aryl/heteroaryl acetonitriles with 1-(2-arylcyclopropyl)-3,3-(bismethylthio)-2-propen-1-ones have been shown to undergo facile acid-induced domino carbocationic rearrangement yielding a variety of substituted tricyclic aromatic and heteroaromatic frameworks in high yields in a one-pot operation. The methodology provides efficient, high-yield routes for synthesis of novel substituted dihydrophenalenes, dihydrobenzo[d,e]anthracene, cyclopenta[a]naphthalene, and fused heteroaromatics such as substituted 4,5-dihydrobenzo[c,d]indole, dihydronaphtho[1,8-b,c]thiophene, dihydroindeno[5,4-b]- and -[4,5-b]-thiophenes, cyclopenta[a]carbazole, and dihydrocyclopenta[e]indazol-3-one derivatives. The probable mechanism of this interesting domino process appears to involve stepwise or concomitant acid-induced ring opening and intramolecular cyclocondensation of cyclopropyl ketones to give benzo-fused arene (or heteroarene) intermediates bearing a reactive benzylic carbocation that is captured intramolecularly either by a preexisting aromatic (or heteroaromatic) ring or by a newly formed benzene ring to give either peri-fused or angularly fused products, respectively. Thus, the overall domino process entails formation of two C-C bonds, a substituted benzene ring along with a peri-fused cyclohexane or angularly fused cyclopentane ring in a single operation

    Reaction of α-oxoketene-N,S-arylaminoacetals with vilsmeier reagents: an efficient route to highly functionalized quinolines and their benzo/hetero-fused analogue

    No full text
    A simple, highly efficient, and regioselective synthesis of functionalized quinolines through Vilsmeier cyclization of a variety of α-oxoketene-N,S-anilinoacetals has been reported. The cyclization is found to be facile with N,S-acetals bearing strongly activating groups on aniline, whereas yields of quinolines are moderate in other cases. The reaction could also be extended for the synthesis of substituted tricyclic benzo[h]quinoline, pyrido[2,3-h]quinoline, 4,7-diphenylphenanthroline, and tetracyclic quino[8,7-h]quinoline by performing a Vilsmeier reaction on N,S-acetals derived from 1-naphthylamine, m-phenylenediamine, o-phenylenediamine, and 1,5-diaminonaphthalene, respectively. A few of the newly synthesized quinolines are subjected to further transformation to afford 2-unsubstituted (Raney-Ni/Ethanol), quinoline-5,8-quinone (NBS/H2SO4), or 2-alkyl/aryl aminoquinolines through sequential m-CPBA oxidation to the corresponding (2-methylsulfonyl)quinoline followed by replacement with appropriate amines. Similarly, cycloannulation of a few 2-methylthio-3-benzoylquinolines with hydrazine hydrate under microwave irradiation afforded the corresponding substituted and fused pyrazolo[3,4-b]quinolines in excellent yields, whereas TBTH/AIBN-mediated cyclization of the corresponding 3-(2-bromobenzoyl)-2-methylthioquinolines yielded the corresponding benzothiopyrano-fused quinolines through radical translocation
    corecore