25,532 research outputs found
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures
We investigate the gas gain behaviour of a triple-GEM configuration in gas
mixtures of argon, krypton and xenon with ten and thirty percent of carbon
dioxide at pressures between 1 and 3 bar. Since the signal widths affect the
dead time behaviour of the detector we present signal length measurements to
evaluate the use of the triple-GEM in time-resolved X-ray imaging.Comment: 19 pages, 21 figures, revised version, accepted for publication in
Nucl. Instr. and Meth.
An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics
The lattice Boltzmann equation can be viewed as a discretization of the
continuous Boltzmann equation. Because of this connection it has long been
speculated that lattice Boltzmann algorithms might obey an H-theorem. In this
letter we prove that usual nine-velocity models do not obey an H-theorem but
models that do obey an H-theorem can be constructed. We consider the general
conditions a lattice Boltzmann scheme must satisfy in order to obey an
H-theorem and show why on a lattice, unlike the continuous case, dynamics that
decrease an H-functional do not necessarily lead to a unique ground state.Comment: 6 pages, latex, no figures, accepted for publication in Europhys.
Let
Effect of Poisson ratio on cellular structure formation
Mechanically active cells in soft media act as force dipoles. The resulting
elastic interactions are long-ranged and favor the formation of strings. We
show analytically that due to screening, the effective interaction between
strings decays exponentially, with a decay length determined only by geometry.
Both for disordered and ordered arrangements of cells, we predict novel phase
transitions from paraelastic to ferroelastic and anti-ferroelastic phases as a
function of Poisson ratio.Comment: 4 pages, Revtex, 4 Postscript figures include
The State-of-the-Art and Prospects of Learning Factories
AbstractChangeability of manufacturing systems is an important enabler for offering large variety of competitive products to satisfy customers’ requirements. Learning factories, as teaching and research environments, can play a key role in developing new solutions for changeability, transferring them to the industry and using them in educating engineers. The results of a survey of existing learning factories and their characteristics are presented. Their use in research, teaching and industrial projects is analyzed. A novel scheme to classify those systems with regard to their design, products and their changeability characteristics is outlined. Conclusions about the future of learning factories are drawn
The Relationship between Trait Empathy and Memory Formation for Social vs. Non-Social Information
Background: To navigate successfully through their complex social environment, humans need both empathic and mnemonic skills. Little is known on how these two types of psychological abilities relate to each other in humans. Although initial clinical findings suggest a positive association, systematic investigations in healthy subject samples have not yet been performed. Differentiating cognitive and affective aspects of empathy, we assumed that cognitive empathy would be positively associated with general memory performance, while affective empathy, due to enhanced other-related emotional reactions, would be related to a relative memory advantage for information of social as compared to non-social relevance. Methods: We investigated in young healthy participants the relationship between dispositional cognitive and affective empathy, as measured by Davis’ Interpersonal Reactivity Index (Journal of Personality and Social Psychology, 44, 113–126, 1983), and memory formation for stimuli (numbers presented in a lottery choice task) that could be encoded in either a social (other-related) or a non-social (self-related) way within the task. Results: Cognitive empathy, specifically perspective taking, correlated with overall memory performance (regardless of encoding condition), while affective empathy, specifically empathic personal distress, predicted differential memory for socially vs. non-socially encoded information. Conclusion: Both cognitive and affective empathy are associated with memory formation, but in different ways, depending on the social nature of the memory content. These results open new and so far widely neglected avenues of psychological research on the relationship between social and cognitive skills.<br
Retrieval interval mapping: a tool to visualize the impact of the spectral retrieval range on differential optical absorption spectroscopy evaluations
Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the retrieval parameters for each specific case and particular trace gas of interest. Of these parameters, the retrieval wavelength range is one of the most important ones. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach for finding the optimal retrieval wavelength range and quantitative assessment is missing. Here we present a novel tool to visualize the effect of different evaluation wavelength ranges. It is based on mapping retrieved column densities in the retrieval wavelength space and thus visualizing the consequences of different choices of spectral retrieval ranges caused by slightly erroneous absorption cross sections, cross correlations and instrumental features. Based on the information gathered, an optimal retrieval wavelength range may be determined systematically
Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber
International audienceSeries of infrared extinction spectra of ice crystals were recorded in the 6000?800 cm-1 wavenumber regime during expansion cooling experiments in the large aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe. Either supercooled sulphuric acid solution droplets or dry mineral dust particles were added as seed aerosols to initiate ice formation after having established ice supersaturated conditions inside the chamber. The various ice nucleation runs were conducted at temperatures between 237 and 195 K, leading to median sizes of the nucleated ice particles of 1?15 µm. The measured infrared spectra were fitted with reference spectra from T-matrix calculations to retrieve the number concentration as well as the number size distribution of the generated ice clouds. The ice particles were modelled as finite circular cylinders with aspect ratios ranging from 0.5 to 3.0. Benefiting from the comprehensive diagnostic tools for the characterisation of ice clouds which are available at the AIDA facility, the infrared retrieval results with regard to the ice particle number concentration could be compared to independent measurements with various optical particle counters. This provided a unique chance to quantitatively assess potential errors or solution ambiguities in the retrieval procedure which mainly originate from the difficulty to find an appropriate shape representation for the aspherical particle habits of the ice crystals. Based on these inter-comparisons, we demonstrate that there is no standard retrieval approach which can be routinely applied to all different experimental scenarios. In particular, the concept to account for the asphericity of the ice crystals, the a priori constraints which might be imposed on the unknown number size distribution of the ice crystals (like employing an analytical distribution function), and the wavenumber range which is included in the fitting algorithm should be carefully adjusted to each single retrieval problem
GREAT: the SOFIA high-frequency heterodyne instrument
We describe the design and construction of GREAT, the German REceiver for
Astronomy at Terahertz frequencies operated on the Stratospheric Observatory
for Infrared Astronomy (SOFIA). GREAT is a modular dual-color heterodyne
instrument for highresolution far-infrared (FIR) spectroscopy. Selected for
SOFIA's Early Science demonstration, the instrument has successfully performed
three Short and more than a dozen Basic Science flights since first light was
recorded on its April 1, 2011 commissioning flight.
We report on the in-flight performance and operation of the receiver that -
in various flight configurations, with three different detector channels -
observed in several science-defined frequency windows between 1.25 and 2.5 THz.
The receiver optics was verified to be diffraction-limited as designed, with
nominal efficiencies; receiver sensitivities are state-of-the-art, with
excellent system stability. The modular design allows for the continuous
integration of latest technologies; we briefly discuss additional channels
under development and ongoing improvements for Cycle 1 observations.
GREAT is a principal investigator instrument, developed by a consortium of
four German research institutes, available to the SOFIA users on a
collaborative basis
- …