177 research outputs found

    A novel substitution 1381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides

    Get PDF
    The recent reduction in the efficacy of azole fungicides in controlling Septoria leaf blotch of wheat, caused by Mycosphaerella graminicola, has prompted concerns over possible development of resistance, particularly in light of the recent emergence of widespread resistance to quinone outside inhibitors (QoIs). We have recently implicated alterations in the target-encoding sterol 14 alpha-demethylase protein (CYP51), and over-expression of genes encoding efflux pumps, in reducing sensitivity to the azole class of sterol demethylation inhibitors (DMIs) in M. graminicola. Here we report on the prevalence and selection of two CYP51 alterations, substitution I381V and deletion of codons 459 and 460 (Delta Y459/G460), in populations of M. graminicola. Neither alteration has previously been identified in human or plant pathogenic fungi resistant to azoles. The presence of Delta Y459/G460 showed a continuous distribution of EC50 values across isolates with either I381 or V381, and had no measurable effect on azole sensitivity. Data linking fungicide sensitivity with the presence of I381V in M. graminicola show for the first time that a particular CYP51 alteration is differentially selected by different azoles in field populations of a plant pathogen. Substitution I381V although not an absolute requirement for reduced azole sensitivity, is selected by tebuconazole and difenoconazole treatment, suggesting an adaptive advantage in the presence of these two compounds. Prochloraz treatments appeared to select negatively for I381V, whereas other azole treatments did not or only weakly impacted on the prevalence of this substitution. These findings suggest treatments with different members of the azole class of fungicides could offer a resistance management strategy

    The MUSICA MetOp/IASI H2O and deltaD products: characterisation and long-term comparison to NDACC/FTIR data

    Get PDF
    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA\u27s ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI\u27s middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes

    The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda

    Get PDF
    Azole resistance is a concern for the management of diseases caused by Aspergillus fumigatus in humans. Azole fungicide use in the environment has been identified as a possible cause for development of resistance, which increases the complexity and number of stakeholders involved in this emerging problem. A workshop was held in Amsterdam early 2019 in which stakeholders, including medical and agricultural researchers, representatives from the government, public health, fungicide producers and end-users, reviewed the current evidence supporting environmental selection for resistance and to discuss which research and measures are needed to retain the effectiveness of the azole class for environmental and medical applications. This paper provides an overview of the latest insights and understanding of azole resistance development in the clinical setting and the wider environment. A One Health problem approach was undertaken to list and prioritize which research will be needed to provide missing evidence and to enable preventive intervention

    Comparison of sapwood invasion by three Phytophthora spp.in different hosts

    Get PDF
    Many Phytophthora spp. have recently been isolated from native vegetation in Western Australia. As their pathogenicity is often unknown, it is not possible to provide advice to land managers on the impact of site infestation on native plants and how these infestations should be managed. We describe a rapid screening method based on sapwood invasion that has been used to compare the pathogenicity of Phytophthora arenaria, P. cinnamomi and P. multivora. Radial invasion into the xylem of six banksias and three eucalypts was assessed in an excised branch assay in summer and winter. Branches were wound inoculated and invasion was assessed by plating from a strip of tissue cut across the stem at the inoculation point and at 40 mm above and below. A symptomless infection had established in both the bark and sapwood within 6 days. P. arenaria was only isolated from the strip of tissue at the inoculation point. P. cinnamomi was isolated from the sapwood of Banksia attenuata, B. burdettii, B. menziesii and B. speciosa 40 mm above or below the inoculation point in some experiments. P. multivora was isolated from B. speciosa 40 mm below the inoculation point in one experiment. Hyphae of both species were seen in both ray parenchyma cells and xylem vessels. The invasiveness of the Phytophthora spp. was compared on the two groups of hosts using scores for sapwood invasion at the inoculation point. For banksias, P. cinnamomi and P. multivora had significantly higher invasion scores on banksias than P. arenaria but were not significantly different to one another. There was no significant difference between the three Phytophthora spp. on the eucalypt hosts. Assessing sapwood invasion provides a rapid, inexpensive and biologically meaningful way of screening the many Phytophthora spp. that have been isolated from native vegetation
    corecore