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Abstract

A shift toward transgenic crops which produce combinations of insecticidal proteins has increased the interest

(Syngenta Seeds, Inc., Minnetonka, MN) in studying the potential for interactions amongst those proteins. We

present a general testing method which accommodates proteins with nonoverlapping spectrums of activity.

Our sequential testing approach first investigates groups of the proteins with overlapping activity; e.g., proteins

active against Lepidoptera or Coleoptera, respectively. The Colby method is used to test for interactions within

each respective group. Subsequently, the mixture of proteins within each group is regarded as a single entity

and tests for interactions between the groups (when combined) is conducted using analysis of variance. We il-

lustrate the method using Cry1Ab, Vip3Aa20, and Cry1F (a mixture of proteins active against Lepidoptera), and

mCry3A and eCry3.1Ab (a mixture of proteins active against Coleoptera). These insecticidal proteins are pro-

duced by Bt11 � MIR162 � TC1507 � MIR604 � 5307 maize. We detected no interactions between Cry1Ab,

Vip3Aa20, and Cry1F in tests using larvae of two different lepidopteran species, and possible slight antagonism

between mCry3A and eCry3.1Ab with a coleopteran test species. We detected no effect of (eCry3.1Ab þ
mCry3A) on the potency of (Cry1Ab þ Vip3Aa20 þ Cry1F) to lepidopteran larvae, and no effect of (Cry1Ab þ
Vip3Aa20 þ Cry1F) on the potency of (mCry3A þ eCry3.1Ab) to coleopteran larvae. We discuss implications of

these results for characterization of Bt11 � MIR162 � TC1507 � MIR604 � 5307 maize, and the value of the

method for characterizing other transgenic crops that produce several insecticidal proteins.

Key words: Bacillus thuringiensis, synergism, Cry, stacked, trait

In recent years insect control with transgenic crops expressing

insecticidal proteins from Bacillus thuringiensis Berliner (Bacillales:

Bacillaceae) (Bt) has shifted toward using combinations of three or

more insecticidal traits (Que et al. 2010, Carrière et al. 2015, Huang

2015). This approach of combining (stacking) insect control traits can

have distinct advantages in terms of providing: 1) a reduced potential

for insect resistance development, 2) a potentially broader array of

target pest species control, and 3) simplified crop management plans

as compared to transgenic crops which express one or only a couple

insecticidal proteins. In particular, genetically engineered Zea mays

L. (maize) products are increasingly using this combined insecticidal

trait approach in global crop production to control various above-

and below-ground insect pests. The Syngenta maize Events MIR604

Agrisure RW (Syngenta Seeds, Inc., Minnetonka, MN) and 5307

express the insecticidal proteins modified Cry3A (mCry3A) and

eCry3.1Ab, respectively, which are active against certain coleopteran

insect pests including the western corn rootworm (Diabrotica virgi-

fera virgifera LeConte, WCRW) (Walters et al. 2008, 2010). These

two insecticidal proteins are present together in Agrisure Duracade

(Syngenta Seeds, Inc., Minnetonka, MN) maize by means of conven-

tional breeding of Events MIR604 and 5307. Syngenta Events Bt11

and MIR162 maize, and Dow AgroSciences Event TC1507 Herculex

(Dow AgroSciences, Inc., Indianapolis, IN) maize express the insecti-

cidal proteins Cry1Ab, Vip3Aa20, and Cry1F, respectively, which are

active against certain lepidopteran insect pests including the

European corn borer (Ostrinia nubilalisHübner, ECB) and the fall ar-

myworm (Spodoptera frugiperda (J. E. Smith), FAW) (Koziel et al.

1993, Estruch et al. 1996, Herman et al. 2004, Wolt et al. 2005).
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Also through conventional breeding, Syngenta has created stacked

maize hybrids containing all five of the above insecticidal proteins to

provide control of both lepidopteran and coleopteran pest insects.

The characterization of a trait stack with multiple protein plant

incorporated protectants (PIPs) should include relevant information

on the registered single protein PIP components as well as discussion

of any potential antagonistic, synergistic, or potentiating toxicologi-

cal interactions of the multiple proteins in support of product regis-

tration (US EPA 2009a, Raybould et al. 2012). As the means to test

for interactions amongst insecticidal proteins which target different

orders of insect pests is not always evident, we have prescribed a

bioassay method to test such a hypothesis (e.g., the insecticidal ac-

tivity of a specified lepidopteran-active protein mixture is not

affected by the presence of a given coleopteran-active protein mix-

ture, and vice-versa).

The testing method we describe herein is designed with two dis-

tinct phases (Fig. 1). This two-phase approach aptly addresses the

question of protein-protein interactions in a modular fashion and

provides a simple, yet thorough experimental design. A somewhat

related, but experimentally different approach (use of six or more

concentrations to generate dose-responses for single LC50 or IC50

comparisons, based on examination of the overlap of 95% CIs) has

been used by others seeking regulatory approvals of transgenic crops

which combine lepidopteran-active and coleopteran-acive traits (US

EPA 2007). Although our method was devised for the purposes of a

genetically modified trait stack risk assessment, it can be viewed as a
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Fig. 1. Testing for the interaction of insecticidal protein mixtures in both Lepidoptera and Coleoptera when the mixtures target susceptible pests across both

orders.
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general approach to testing complex mixtures (e.g., other insecti-

cides) where the components have different spectrums of activity. In

the first phase of experiments described, the potential interactions

among the components of the respective lepidopteran-active (e.g.,

Cry1Ab þ Vip3Aa20 þ Cry1F) and coleopteran-active (e.g.,

eCry3.1Ab þ mCry3A) protein mixtures are examined. In a second

phase, the potential interaction of the lepidopteran-active and

coleopteran-active protein mixtures in combination is then assessed

for each type of sensitive target pest.

For this example, in phase I, the interaction among the compo-

nents of the lepidopteran-active insecticidal protein mixture

(Cry1Ab þ Vip3Aa20 þ Cry1F) and the interaction among the com-

ponents of the respective coleopteran-active insecticidal protein mix-

ture (eCry3.1Ab þ mCry3A) were each investigated using an

approach based on the Colby method (Colby 1967).

The Colby method is based on an assumption of independent

modes of action for the individual components tested (e.g., insecti-

cidal proteins) and involves two concurrent experiments using the

same sensitive insect species. The effects (in this case, mortality) of

each insecticidal protein in isolation and from a mixture of the same

insecticidal proteins are measured concurrently. The effects of the

proteins in isolation are used to predict the effect for the concur-

rently tested mixture(s) of the proteins. The hypothesis is that no in-

teractions exist among the components when calculating the

expected mortality response (undergirding the subsequent mathe-

matical comparisons of the predicted with the observed mortality

for the combination of components). If the observed mortalities of

the mixtures are consistently greater than predicted mortalities (typi-

cally tested across several dilutions or ratios), synergism would be

inferred; if the observed mortalities of the mixtures are consistently

less than predicted, antagonism would be inferred. Although the

method provides a way to investigate the potential interactions, the

biological relevance as well as any impact on the risk assessment

needs to be considered further on a case-by-case basis, and taking

into account what is already known about the function of the pro-

teins being evaluated. For example, during the risk assessment, if

there is no postulated mechanism for a synergistic interaction, and if

dealing with insecticidal proteins that have a clearly established his-

tory of safe use, this knowledge may outweigh a statistical outcome

in the laboratory suggesting a certain degree of interaction.

Similarly, other parameters must be considered in the risk assess-

ment such as the actual likelihood of a potential route of exposure

or the existence of a high margin of exposure (Raybould et al.

2012).

In phase I of these experiments, two series of insect feeding bio-

assays were performed for the lepidopteran-active protein mixture,

one series with ECB larvae and one with FAW larvae (Fig. 1). This

was necessary since ECB larvae are effectively controlled by

Cry1Ab or Cry1F (Siegfried et al. 2007, 2014), but not by Vip3A

(Yu et al. 1997, Lee et al. 2003), whereas conversely, FAW larvae

are effectively controlled byVip3A or Cry1F, but not by Cry1Ab

(Siebert et al. 2008, Niu et al. 2014). The effects of the

coleopteran-active protein mixture (eCry3.1Ab and mCry3A) were

investigated with only one series of insect feeding bioassays in

phase I using larvae of the Colorado potato beetle (Leptinotarsa

decemlineata, CPB), because CPB are susceptible to both insecti-

cidal proteins. Although corn rootworm larvae (especially WCRW)

are the primary target pests for the eCry3.1Ab and mCry3A pro-

teins (i.e. not the CPB), the CPB was chosen as the test organism or

pest model as it has been previously noted that WCRW is an ex-

tremely challenging pest model to work with for examining the po-

tency of insecticidal proteins in lab bioassays. Other groups have

encountered difficulties obtaining precise mortality responses,

sometimes leading researchers to the use of growth inhibition as an

endpoint parameter for this test organism (Moellenbeck et al.

2001, Herman et al. 2002, English et al. 2003, Walters et al.

2008). Using larvae from the CPB as a susceptible test organism in-

stead of from the WCRW therefore provided a reliable way to

more accurately describe mortality in artificial diet bioassays for

assessing the potential interaction of eCry3.1Ab and mCry3A.

In phase II of our experimental approach, the effect of the

coleopteran-active protein mixture on the activity of the lepidopteran-

active protein mixture and the effect of the lepidopteran-active protein

mixture on the activity of the coleopteran-active protein mixture

were each investigated using two doses selected to give intermedi-

ate activity (�LC30 and LC60). A very similar approach was re-

cently used to investigate the potential for interaction of a single

lepidopteran-active protein with a single coleopteran-active pro-

tein (Raybould et al. 2012). In this present work, for each combi-

natorial bioassay, a sensitive insect species (i.e., ECB to measure

lepidopteran activity, and CPB to measure coleopteran activity)

was exposed to the higher (�LC60) or the lower concentration

(�LC30) of the insecticidal protein mixture alone, and in combina-

tion with the higher concentration of the other protein mixture for

which it is insensitive (i.e., the insecticidal protein mixture that tar-

gets the other insect order). Use of both a lower and higher dose

provides a more robust comparison than using just a single dose as

it supports an assessment of the potential interaction at more than

one concentration of the protein mixtures, yet it remains simple

enough to conduct the necessary concurrent bioassays for statisti-

cal comparisons which follow. In addition, by using two doses

which are in a targeted intermediate activity range, there is an in-

creased ability to detect any significant synergistic or antagonistic

interaction of the insecticidal protein mixtures as compared to use

of only one higher or lower dose combination for the interaction

test mixture.

The results of these types of insecticidal protein interaction stud-

ies in target insects may be used to support current approaches to

risk assessment regarding the potential occurrence of interactions in

nonsensitive nontarget species, including humans and other animals.

The interaction studies can be a component of such assessments,

along with other important environmental considerations specific to

how the insecticidal protein traits are deployed (Raybould et al.

2012).

Materials and Methods

Preparation of Insecticidal Proteins

Vip3A, eCry3.1Ab, and mCry3A proteins were each prepared

from Escherichia coli expression systems, purified by liquid chro-

matography, and converted into respective lyophilized powders.

The microbially produced preparations were determined to contain

86.5% Vip3A, 89.6% eCry3.1Ab, and 71.4% mCry3A by weight,

respectively. All three protein preparations were stored at �20 6

8�C until further use. Similarly, Cry1Ab was prepared from an E.

coli expression system and purified by liquid chromatography, but

first was treated with trypsin to generate a trypsin-resistant core

(Chestukhina et al. 1982, Oppert 1999, Schnepf et al. 1998,

Lightwood et al. 2000). The final preparation of solubilized trun-

cated Cry1Ab was determined to contain 107 lg Cry1Ab/ml (at

97.1% of the total protein) and was stored at 5 6 3 �C.

Microbially produced Cry1F was prepared from a recombinant

microbial Pseudomonas fluorescens expression system and purified
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Also through conventional breeding, Syngenta has created stacked

maize hybrids containing all five of the above insecticidal proteins to

provide control of both lepidopteran and coleopteran pest insects.

The characterization of a trait stack with multiple protein plant

incorporated protectants (PIPs) should include relevant information

on the registered single protein PIP components as well as discussion

of any potential antagonistic, synergistic, or potentiating toxicologi-

cal interactions of the multiple proteins in support of product regis-

tration (US EPA 2009a, Raybould et al. 2012). As the means to test

for interactions amongst insecticidal proteins which target different

orders of insect pests is not always evident, we have prescribed a

bioassay method to test such a hypothesis (e.g., the insecticidal ac-

tivity of a specified lepidopteran-active protein mixture is not

affected by the presence of a given coleopteran-active protein mix-

ture, and vice-versa).

The testing method we describe herein is designed with two dis-

tinct phases (Fig. 1). This two-phase approach aptly addresses the

question of protein-protein interactions in a modular fashion and

provides a simple, yet thorough experimental design. A somewhat

related, but experimentally different approach (use of six or more

concentrations to generate dose-responses for single LC50 or IC50

comparisons, based on examination of the overlap of 95% CIs) has

been used by others seeking regulatory approvals of transgenic crops

which combine lepidopteran-active and coleopteran-acive traits (US

EPA 2007). Although our method was devised for the purposes of a

genetically modified trait stack risk assessment, it can be viewed as a
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Fig. 1. Testing for the interaction of insecticidal protein mixtures in both Lepidoptera and Coleoptera when the mixtures target susceptible pests across both

orders.
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general approach to testing complex mixtures (e.g., other insecti-

cides) where the components have different spectrums of activity. In

the first phase of experiments described, the potential interactions

among the components of the respective lepidopteran-active (e.g.,

Cry1Ab þ Vip3Aa20 þ Cry1F) and coleopteran-active (e.g.,

eCry3.1Ab þ mCry3A) protein mixtures are examined. In a second

phase, the potential interaction of the lepidopteran-active and

coleopteran-active protein mixtures in combination is then assessed

for each type of sensitive target pest.

For this example, in phase I, the interaction among the compo-

nents of the lepidopteran-active insecticidal protein mixture

(Cry1Ab þ Vip3Aa20 þ Cry1F) and the interaction among the com-

ponents of the respective coleopteran-active insecticidal protein mix-

ture (eCry3.1Ab þ mCry3A) were each investigated using an

approach based on the Colby method (Colby 1967).

The Colby method is based on an assumption of independent

modes of action for the individual components tested (e.g., insecti-

cidal proteins) and involves two concurrent experiments using the

same sensitive insect species. The effects (in this case, mortality) of

each insecticidal protein in isolation and from a mixture of the same

insecticidal proteins are measured concurrently. The effects of the

proteins in isolation are used to predict the effect for the concur-

rently tested mixture(s) of the proteins. The hypothesis is that no in-

teractions exist among the components when calculating the

expected mortality response (undergirding the subsequent mathe-

matical comparisons of the predicted with the observed mortality

for the combination of components). If the observed mortalities of

the mixtures are consistently greater than predicted mortalities (typi-

cally tested across several dilutions or ratios), synergism would be

inferred; if the observed mortalities of the mixtures are consistently

less than predicted, antagonism would be inferred. Although the

method provides a way to investigate the potential interactions, the

biological relevance as well as any impact on the risk assessment

needs to be considered further on a case-by-case basis, and taking

into account what is already known about the function of the pro-

teins being evaluated. For example, during the risk assessment, if

there is no postulated mechanism for a synergistic interaction, and if

dealing with insecticidal proteins that have a clearly established his-

tory of safe use, this knowledge may outweigh a statistical outcome

in the laboratory suggesting a certain degree of interaction.

Similarly, other parameters must be considered in the risk assess-

ment such as the actual likelihood of a potential route of exposure

or the existence of a high margin of exposure (Raybould et al.

2012).

In phase I of these experiments, two series of insect feeding bio-

assays were performed for the lepidopteran-active protein mixture,

one series with ECB larvae and one with FAW larvae (Fig. 1). This

was necessary since ECB larvae are effectively controlled by

Cry1Ab or Cry1F (Siegfried et al. 2007, 2014), but not by Vip3A

(Yu et al. 1997, Lee et al. 2003), whereas conversely, FAW larvae

are effectively controlled byVip3A or Cry1F, but not by Cry1Ab

(Siebert et al. 2008, Niu et al. 2014). The effects of the

coleopteran-active protein mixture (eCry3.1Ab and mCry3A) were

investigated with only one series of insect feeding bioassays in

phase I using larvae of the Colorado potato beetle (Leptinotarsa

decemlineata, CPB), because CPB are susceptible to both insecti-

cidal proteins. Although corn rootworm larvae (especially WCRW)

are the primary target pests for the eCry3.1Ab and mCry3A pro-

teins (i.e. not the CPB), the CPB was chosen as the test organism or

pest model as it has been previously noted that WCRW is an ex-

tremely challenging pest model to work with for examining the po-

tency of insecticidal proteins in lab bioassays. Other groups have

encountered difficulties obtaining precise mortality responses,

sometimes leading researchers to the use of growth inhibition as an

endpoint parameter for this test organism (Moellenbeck et al.

2001, Herman et al. 2002, English et al. 2003, Walters et al.

2008). Using larvae from the CPB as a susceptible test organism in-

stead of from the WCRW therefore provided a reliable way to

more accurately describe mortality in artificial diet bioassays for

assessing the potential interaction of eCry3.1Ab and mCry3A.

In phase II of our experimental approach, the effect of the

coleopteran-active protein mixture on the activity of the lepidopteran-

active protein mixture and the effect of the lepidopteran-active protein

mixture on the activity of the coleopteran-active protein mixture

were each investigated using two doses selected to give intermedi-

ate activity (�LC30 and LC60). A very similar approach was re-

cently used to investigate the potential for interaction of a single

lepidopteran-active protein with a single coleopteran-active pro-

tein (Raybould et al. 2012). In this present work, for each combi-

natorial bioassay, a sensitive insect species (i.e., ECB to measure

lepidopteran activity, and CPB to measure coleopteran activity)

was exposed to the higher (�LC60) or the lower concentration

(�LC30) of the insecticidal protein mixture alone, and in combina-

tion with the higher concentration of the other protein mixture for

which it is insensitive (i.e., the insecticidal protein mixture that tar-

gets the other insect order). Use of both a lower and higher dose

provides a more robust comparison than using just a single dose as

it supports an assessment of the potential interaction at more than

one concentration of the protein mixtures, yet it remains simple

enough to conduct the necessary concurrent bioassays for statisti-

cal comparisons which follow. In addition, by using two doses

which are in a targeted intermediate activity range, there is an in-

creased ability to detect any significant synergistic or antagonistic

interaction of the insecticidal protein mixtures as compared to use

of only one higher or lower dose combination for the interaction

test mixture.

The results of these types of insecticidal protein interaction stud-

ies in target insects may be used to support current approaches to

risk assessment regarding the potential occurrence of interactions in

nonsensitive nontarget species, including humans and other animals.

The interaction studies can be a component of such assessments,

along with other important environmental considerations specific to

how the insecticidal protein traits are deployed (Raybould et al.

2012).

Materials and Methods

Preparation of Insecticidal Proteins

Vip3A, eCry3.1Ab, and mCry3A proteins were each prepared

from Escherichia coli expression systems, purified by liquid chro-

matography, and converted into respective lyophilized powders.

The microbially produced preparations were determined to contain

86.5% Vip3A, 89.6% eCry3.1Ab, and 71.4% mCry3A by weight,

respectively. All three protein preparations were stored at �20 6

8�C until further use. Similarly, Cry1Ab was prepared from an E.

coli expression system and purified by liquid chromatography, but

first was treated with trypsin to generate a trypsin-resistant core

(Chestukhina et al. 1982, Oppert 1999, Schnepf et al. 1998,

Lightwood et al. 2000). The final preparation of solubilized trun-

cated Cry1Ab was determined to contain 107 lg Cry1Ab/ml (at

97.1% of the total protein) and was stored at 5 6 3 �C.

Microbially produced Cry1F was prepared from a recombinant

microbial Pseudomonas fluorescens expression system and purified
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into a single lyophilized powder prior to this study by Dow

AgroSciences (Indianapolis, IN, USA). This preparation was deter-

mined to contain 35% Cry1F by weight and was stored at �80 6

10�C until further use. Table 1 summarizes the corresponding sus-

ceptible insects (and order) for these different insecticidal proteins

used.

Bioassay Preparation

Diet incorporation bioassays were conducted as described in Graser

and Walters (2015). In brief, for the ECB and FAW bioassays, a soy-

wheat germ-based artificial lepidopteran diet (Frontier Scientific

Services Inc., Newark, DE, USA) was freshly prepared for each bio-

assay according to the manufacturer’s instructions and maintained

in liquefied form at �52.5 6 2.5 �C in a water bath. For the CPB

bioassays, a casein-based artificial diet (Frontier Scientific Services,

Inc.) was also freshly prepared for each bioassay and similarly main-

tained in liquefied form in a water bath. To prevent bacterial and

fungal growth, antibiotics were added (Graser and Walters 2015) to

each liquefied diet type (after equilibration to the water bath tem-

perature) prior to mixing with samples and addition to respective

treatment or control plates. For both diet types, each treatment or

buffer control solution was thoroughly mixed with artificial diet at a

ratio of 1:1 (v:v) (e.g., 3ml of treatment solution:3ml insect diet).

The mixed diets were dispensed at 100 ml per well into 24-well assay

plates and allowed to solidify. Insect larvae from respective test spe-

cies (one larva per well) were added, plates were sealed with clear

polyolefin film and maintained at ambient temperature and humid-

ity in the dark.

Phase I Insecticidal Bioassays

Testing for Interaction of Cry1Ab, Cry1F and Vip3Aa20 Insecticidal

Proteins. Diet incorporation bioassays were used to measure the

insecticidal effect of Cry1Ab, Vip3Aa20, and Cry1F individually,

and in a combination of all three proteins on first instar ECB and

FAW larvae. For each protein, Cry1Ab, Vip3Aa20, and Cry1F (pre-

pared in 50mM CAPS, pH 10.0; purified water; and 20mM CAPS,

pH 10.5, respectively), the starting concentrations used as a mixture

in the interaction bioassay were first determined using individual

dose–response bioassays for the ECB and FAW larvae (Supp Tables

1 and 2 [online only]). The concentrations of respective Cry1Ab,

Vip3Aa20, and Cry1F components that give the desired response

were determined to be 200, 100, and 400ng/ml diet for the ECB bio-

assay, and 200, 400, and 2,000ng/ml diet, respectively, for the FAW

bioassay. These respective starting concentrations were based on a

concentration of the most active protein component(s) capable of

high mortality when undiluted and which would support a five-dose

dilution series resulting in partial activity. In addition, for the com-

ponent that was the least active for each insect species (e.g.,

Vip3Aa20 for ECB, and Cry1Ab for FAW), a starting concentration

was selected at a uniform protein input of one-half the concentration

of the most active component (e.g., Cry1Ab for ECB, and Vip3Aa20

for FAW) in the respective tests. For convenience, the mixture of

these proteins at the above starting concentrations is referred to as

“Mixture A” for ECB bioassays or “Mixture B” for FAW bioassays,

respectively. Mixtures A and B were each diluted by half, one-

fourth, one-eighth, and one-sixteenth of their starting concentration

resulting in a total of five treatment levels for each. The buffer used

for the combined treatment dilutions consisted of equal volumes of

50mM CAPS (pH 10.0), purified water, and 20mM CAPS (pH

10.5) and was also used as a negative buffer control. Three replicate

plates were used for each treatment or control being tested.

Mortality was assessed at 120h after treatment initiation.

Testing for Interaction of eCry3.1Ab and mCry3A Insecticidal

Proteins. Diet incorporation bioassays were used to measure the

effects of eCry3.1Ab and mCry3A, individually and in combination,

on CPB larvae. For each insecticidal protein (prepared in 10mM

ammonium bicarbonate, pH 10.0; and purified water, respectively)

the starting concentrations used as a mixture in the interaction bio-

assay were first determined using individual dose–response bioas-

says for the CPB larvae where it was found that the eCry3.1Ab and

mCry3A insecticidal proteins each have a similar mortality response

against the CPB larvae (Supp Table 3 [online only]). The starting

concentrations of eCry3.1Ab and mCry3A were determined to be 4

mg/ml diet. Similar to the strategy used for the lepidopteran-active

insecticidal proteins described earlier, these respective starting con-

centrations were based on a concentration capable of high mortality

when undiluted and which would support a five-dose dilution series

(half, one-fourth, one-eighth, and one-sixteenth of the starting con-

centration) resulting in partial activity. The buffer used for the com-

bined treatment dilutions consisted of equal volumes of purified

water and 10mM ammonium bicarbonate (pH 10.0) and was also

used as a negative buffer control. Three replicate plates were used

for each treatment or control being tested. Mortality was assessed at

120h after treatment initiation.

Phase II Insecticidal Bioassays

Dose–Response of the Lepidopteran-Active Protein Mixture using

ECB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. Vip3Aa20 and Cry1F solutions

were prepared in purified water and 20mM CAPS (pH 10.5),

respectively, then combined with Cry1Ab in 50mM CAPS (pH

10.0) to obtain a single mixture for insect bioassay. As both the ECB

and the FAW experiments confirmed no interaction of the

lepidopteran-active proteins Cry1Ab, Cry1F and Vip3Aa20, the

dose–response for this mixture in Phase II was only conducted with

ECB.

A similar series of concentrations was used as described for

Phase I bioassays, except the highest concentration (designated 1X)

of the lepidopteran-active protein mixture was increased to 400ng

Cry1Ab þ 200ng Vip3Aa20 þ 800ng Cry1F per ml diet. This was

then serially diluted to generate eight doses from 1X to X/128 (Supp

Table 4 [online only]).

Diet incorporation bioassays were set up as described for Phase I

bioassays, with each treatment consisting of the protein mixture

combined with insect diet at a ratio of 1:1 (v:v). A negative control

for the bioassay consisted of the dilution buffer combined 1:1 with

the diet. Mortality was assessed at 120 h after treatment initiation.

Two concentrations showing intermediate levels of response, one

approximating the 30% mortality response (ECB low dose) and one

Table 1. Summary of insecticidal proteins and corresponding sus-

ceptible insects used

Insecticidal protein Susceptible insect tested Order

Cry1Ab ECB Lepidoptera

Cry1F ECB, FAW Lepidoptera

Vip3Aa20 FAW Lepidoptera

eCry3.1Ab CPB Coleoptera

mCry3A CPB Coleoptera
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approximating the 60% mortality response (ECB high dose) were

identified based on the dose–response data for use in the subsequent

protein interaction experiments.

Dose–Response of the Coleopteran-Active Protein Mixture Using

CPB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. A solution of eCry3.1Ab was

prepared in 10mM ammonium bicarbonate (pH 10.0) and com-

bined with an equal volume of mCry3A solution prepared in puri-

fied water to obtain a single mixture for insect bioassay. A similar

series of concentrations was used as described for Phase I bioassays,

except the highest concentration (designated 1X) of the coleopteran-

active protein mixture was increased to 8 mg eCry3.1Ab þ 8 mg
mCry3A per ml diet. This was then serially diluted to generate eight

doses from 1X to X/128 (Supp Table 5 [online only]).

Diet incorporation bioassays were set up as described for Phase

I, with each treatment consisting of the protein mixture combined

with insect diet at a ratio of 1:1 (v:v). A negative control for the bio-

assay consisted of the dilution buffer combined 1:1 with the diet.

Mortality was assessed at 120 hours after treatment initiation. Two

concentrations showing intermediate levels of response, one around

the 30% mortality response (CPB low dose) and one around the

60% mortality response (CPB high dose) were identified based on

the dose–response data for use in the subsequent protein interaction

experiments.

Testing for Effects of the Coleopteran-Active Protein Mixture on the

Mortality of ECB Exposed to the Lepidopteran-Active Protein

Mixture. The effect of the coleopteran-active protein mixture on the

insecticidal toxicity of the lepidopteran-active protein mixture was

examined using ECB bioassays. Two doses of the lepidopteran-

active protein mixture, alone and in combination with the high dose

of the coleopteran-active protein mixture (Supp Table 6 [online

only]), were used in three independent bioassays (giving three 24-

well plates for each treatment or control being tested).

The mortality responses of ECB exposed to the lepidopteran-

active protein mixture alone were compared with the responses of

ECB exposed to the lepidopteran-active protein mixture combined

with the coleopteran-active protein mixture. The protein interaction

bioassays were set up using the same procedures and conditions

described in Phase I ECB bioassays. The CPB high dose (alone) was

used as a negative control to exclude any nonspecific effects of the

coleopteran-active protein mixture on ECB. Additional negative

controls included the buffers used in the preparations of both the

lepidopteran-active protein mixture and the combination of the

lepidopteran-active protein mixture þ the coleopteran-active protein

mixture. A positive control using CPB high dose against CPB was

included to confirm the biological activity of the coleopteran-active

protein mixture. Mortality was assessed at 120 h after treatment

initiation.

Testing for Effects of the Lepidopteran-Active Protein Mixture on

the Mortality of CPB Exposed to the Coleopteran-Active Protein

Mixture. The effect of the lepidopteran-active protein mixture on

the insecticidal toxicity of the coleopteran-active protein mixture

was examined using CPB bioassays. Two doses of the coleopteran-

active protein mixture, alone and in combination with the high dose

of the lepidopteran-active protein mixture (Supp Table 7 [online

only]), were used in three independent bioassays (giving three 24-

well plates for each treatment or control being tested).

The mortality responses of CPB exposed to the coleopteran-active

protein mixture alone were compared with the responses of CPB

exposed to the coleopteran-active protein mixture combined with the

lepidopteran-active protein mixture. The protein interaction bioassays

were set up using the same procedures and conditions described in

Phase I CPB bioassays. The ECB high dose (alone) was used as a nega-

tive control to exclude any nonspecific effects of the lepidopteran-

active protein mixture on CPB. Additional negative controls included

the buffers used in the preparations of both the coleopteran-active pro-

tein mixture and the combination of the lepidopteran-active protein

mixture þ the coleopteran-active protein mixture. A positive control

using ECB high dose against ECB was included to confirm the biologi-

cal activity of the lepidopteran-active protein mixture. Mortality was

assessed at 120h after treatment initiation.

Data Analyses to Determine the Interaction Among a Mixture of

Cry1Ab1 Vip3Aa201 Cry1F or a Mixture of eCry3.1Ab1

mCry3A Using the Colby Method

In phase I insecticidal protein bioassays, responses to the individual

proteins were evaluated as percent mortalities and used to predict

the mortality for protein combinations according to the Colby

method (Colby 1967). The percent mortality was corrected accord-

ing to the mortality observed in a negative control using Abbott’s

formula1 (Abbott 1925). The presence of any synergistic or antago-

nistic interaction between the proteins within a mixture (e.g.,

lepidopteran-active Cry1Ab þ Vip3Aa20 þ Cry1F or coleopteran-

active eCry3.1Ab þ mCry3A) was evaluated by comparing the

predicted with the observed responses following exposure to the

respective protein mixture. Predicted responses were calculated

based on an assumption of independent modes of action. If compo-

nent A alone gives x% effect and component B alone gives y%

effect, then under the assumption of independent modes of action, the

predicted response to A þ B is x þ y – (xy/100). For Cry1Ab,

Vip3Aa20, and Cry1F, if component A alone gives x% effect, compo-

nent B alone gives y% effect and component C alone gives z% effect,

then under the assumption of independent action, the predicted

response to A þ B þ C is x þ y þ z – [(xy þ xz þ yz)/100]þ (xyz/

10,000). Three independent bioassays were conducted for ECB, FAW,

or CPB larvae with the individual and combined protein treatments

tested concurrently in each assay, then used to obtain the respective

averages for observed versus expected mortalities.

Statistical Analysis to Determine the Interaction for Combinations

of the Lepidopteran- and Coleopteran-Active Protein Mixtures

In phase II insecticidal protein bioassays, using a combination of the

lepidopteran- and coleopteran-active protein mixtures, data were

subjected to analysis of variance using the following model:

Yijk ¼ U þ Di þ Ij þ Tk þ DIij þ eijk

where Yijk, observed % mortality; U, overall mean; Di, dose effect

of the active ingredient; Ij, inactive ingredient effect; Tk, effect of

test;DIij, dose � inactive ingredient interaction; eijk, residual error.

For each protein interaction bioassay, F-tests were used to assess

the statistical significance of the effects of dose (treatment

concentration), inactive ingredient, and dose � inactive ingredient

interaction at the customary 0.05 probability level. The software

used for the statistical analysis was SAS, version 9.2 (SAS Institute,

Inc., Cary NC).

1 Abbott’s formula for control mortality: (% treatment mortality � %

control mortality) / (100 � % control mortality) � 100.
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into a single lyophilized powder prior to this study by Dow

AgroSciences (Indianapolis, IN, USA). This preparation was deter-

mined to contain 35% Cry1F by weight and was stored at �80 6

10�C until further use. Table 1 summarizes the corresponding sus-

ceptible insects (and order) for these different insecticidal proteins

used.

Bioassay Preparation

Diet incorporation bioassays were conducted as described in Graser

and Walters (2015). In brief, for the ECB and FAW bioassays, a soy-

wheat germ-based artificial lepidopteran diet (Frontier Scientific

Services Inc., Newark, DE, USA) was freshly prepared for each bio-

assay according to the manufacturer’s instructions and maintained

in liquefied form at �52.5 6 2.5 �C in a water bath. For the CPB

bioassays, a casein-based artificial diet (Frontier Scientific Services,

Inc.) was also freshly prepared for each bioassay and similarly main-

tained in liquefied form in a water bath. To prevent bacterial and

fungal growth, antibiotics were added (Graser and Walters 2015) to

each liquefied diet type (after equilibration to the water bath tem-

perature) prior to mixing with samples and addition to respective

treatment or control plates. For both diet types, each treatment or

buffer control solution was thoroughly mixed with artificial diet at a

ratio of 1:1 (v:v) (e.g., 3ml of treatment solution:3ml insect diet).

The mixed diets were dispensed at 100 ml per well into 24-well assay

plates and allowed to solidify. Insect larvae from respective test spe-

cies (one larva per well) were added, plates were sealed with clear

polyolefin film and maintained at ambient temperature and humid-

ity in the dark.

Phase I Insecticidal Bioassays

Testing for Interaction of Cry1Ab, Cry1F and Vip3Aa20 Insecticidal

Proteins. Diet incorporation bioassays were used to measure the

insecticidal effect of Cry1Ab, Vip3Aa20, and Cry1F individually,

and in a combination of all three proteins on first instar ECB and

FAW larvae. For each protein, Cry1Ab, Vip3Aa20, and Cry1F (pre-

pared in 50mM CAPS, pH 10.0; purified water; and 20mM CAPS,

pH 10.5, respectively), the starting concentrations used as a mixture

in the interaction bioassay were first determined using individual

dose–response bioassays for the ECB and FAW larvae (Supp Tables

1 and 2 [online only]). The concentrations of respective Cry1Ab,

Vip3Aa20, and Cry1F components that give the desired response

were determined to be 200, 100, and 400ng/ml diet for the ECB bio-

assay, and 200, 400, and 2,000ng/ml diet, respectively, for the FAW

bioassay. These respective starting concentrations were based on a

concentration of the most active protein component(s) capable of

high mortality when undiluted and which would support a five-dose

dilution series resulting in partial activity. In addition, for the com-

ponent that was the least active for each insect species (e.g.,

Vip3Aa20 for ECB, and Cry1Ab for FAW), a starting concentration

was selected at a uniform protein input of one-half the concentration

of the most active component (e.g., Cry1Ab for ECB, and Vip3Aa20

for FAW) in the respective tests. For convenience, the mixture of

these proteins at the above starting concentrations is referred to as

“Mixture A” for ECB bioassays or “Mixture B” for FAW bioassays,

respectively. Mixtures A and B were each diluted by half, one-

fourth, one-eighth, and one-sixteenth of their starting concentration

resulting in a total of five treatment levels for each. The buffer used

for the combined treatment dilutions consisted of equal volumes of

50mM CAPS (pH 10.0), purified water, and 20mM CAPS (pH

10.5) and was also used as a negative buffer control. Three replicate

plates were used for each treatment or control being tested.

Mortality was assessed at 120h after treatment initiation.

Testing for Interaction of eCry3.1Ab and mCry3A Insecticidal

Proteins. Diet incorporation bioassays were used to measure the

effects of eCry3.1Ab and mCry3A, individually and in combination,

on CPB larvae. For each insecticidal protein (prepared in 10mM

ammonium bicarbonate, pH 10.0; and purified water, respectively)

the starting concentrations used as a mixture in the interaction bio-

assay were first determined using individual dose–response bioas-

says for the CPB larvae where it was found that the eCry3.1Ab and

mCry3A insecticidal proteins each have a similar mortality response

against the CPB larvae (Supp Table 3 [online only]). The starting

concentrations of eCry3.1Ab and mCry3A were determined to be 4

mg/ml diet. Similar to the strategy used for the lepidopteran-active

insecticidal proteins described earlier, these respective starting con-

centrations were based on a concentration capable of high mortality

when undiluted and which would support a five-dose dilution series

(half, one-fourth, one-eighth, and one-sixteenth of the starting con-

centration) resulting in partial activity. The buffer used for the com-

bined treatment dilutions consisted of equal volumes of purified

water and 10mM ammonium bicarbonate (pH 10.0) and was also

used as a negative buffer control. Three replicate plates were used

for each treatment or control being tested. Mortality was assessed at

120h after treatment initiation.

Phase II Insecticidal Bioassays

Dose–Response of the Lepidopteran-Active Protein Mixture using

ECB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. Vip3Aa20 and Cry1F solutions

were prepared in purified water and 20mM CAPS (pH 10.5),

respectively, then combined with Cry1Ab in 50mM CAPS (pH

10.0) to obtain a single mixture for insect bioassay. As both the ECB

and the FAW experiments confirmed no interaction of the

lepidopteran-active proteins Cry1Ab, Cry1F and Vip3Aa20, the

dose–response for this mixture in Phase II was only conducted with

ECB.

A similar series of concentrations was used as described for

Phase I bioassays, except the highest concentration (designated 1X)

of the lepidopteran-active protein mixture was increased to 400ng

Cry1Ab þ 200ng Vip3Aa20 þ 800ng Cry1F per ml diet. This was

then serially diluted to generate eight doses from 1X to X/128 (Supp

Table 4 [online only]).

Diet incorporation bioassays were set up as described for Phase I

bioassays, with each treatment consisting of the protein mixture

combined with insect diet at a ratio of 1:1 (v:v). A negative control

for the bioassay consisted of the dilution buffer combined 1:1 with

the diet. Mortality was assessed at 120 h after treatment initiation.

Two concentrations showing intermediate levels of response, one

approximating the 30% mortality response (ECB low dose) and one

Table 1. Summary of insecticidal proteins and corresponding sus-

ceptible insects used

Insecticidal protein Susceptible insect tested Order

Cry1Ab ECB Lepidoptera

Cry1F ECB, FAW Lepidoptera

Vip3Aa20 FAW Lepidoptera

eCry3.1Ab CPB Coleoptera

mCry3A CPB Coleoptera

4 Journal of Insect Science, 2017, Vol. 17, No. 2

approximating the 60% mortality response (ECB high dose) were

identified based on the dose–response data for use in the subsequent

protein interaction experiments.

Dose–Response of the Coleopteran-Active Protein Mixture Using

CPB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. A solution of eCry3.1Ab was

prepared in 10mM ammonium bicarbonate (pH 10.0) and com-

bined with an equal volume of mCry3A solution prepared in puri-

fied water to obtain a single mixture for insect bioassay. A similar

series of concentrations was used as described for Phase I bioassays,

except the highest concentration (designated 1X) of the coleopteran-

active protein mixture was increased to 8 mg eCry3.1Ab þ 8 mg
mCry3A per ml diet. This was then serially diluted to generate eight

doses from 1X to X/128 (Supp Table 5 [online only]).

Diet incorporation bioassays were set up as described for Phase

I, with each treatment consisting of the protein mixture combined

with insect diet at a ratio of 1:1 (v:v). A negative control for the bio-

assay consisted of the dilution buffer combined 1:1 with the diet.

Mortality was assessed at 120 hours after treatment initiation. Two

concentrations showing intermediate levels of response, one around

the 30% mortality response (CPB low dose) and one around the

60% mortality response (CPB high dose) were identified based on

the dose–response data for use in the subsequent protein interaction

experiments.

Testing for Effects of the Coleopteran-Active Protein Mixture on the

Mortality of ECB Exposed to the Lepidopteran-Active Protein

Mixture. The effect of the coleopteran-active protein mixture on the

insecticidal toxicity of the lepidopteran-active protein mixture was

examined using ECB bioassays. Two doses of the lepidopteran-

active protein mixture, alone and in combination with the high dose

of the coleopteran-active protein mixture (Supp Table 6 [online

only]), were used in three independent bioassays (giving three 24-

well plates for each treatment or control being tested).

The mortality responses of ECB exposed to the lepidopteran-

active protein mixture alone were compared with the responses of

ECB exposed to the lepidopteran-active protein mixture combined

with the coleopteran-active protein mixture. The protein interaction

bioassays were set up using the same procedures and conditions

described in Phase I ECB bioassays. The CPB high dose (alone) was

used as a negative control to exclude any nonspecific effects of the

coleopteran-active protein mixture on ECB. Additional negative

controls included the buffers used in the preparations of both the

lepidopteran-active protein mixture and the combination of the

lepidopteran-active protein mixture þ the coleopteran-active protein

mixture. A positive control using CPB high dose against CPB was

included to confirm the biological activity of the coleopteran-active

protein mixture. Mortality was assessed at 120 h after treatment

initiation.

Testing for Effects of the Lepidopteran-Active Protein Mixture on

the Mortality of CPB Exposed to the Coleopteran-Active Protein

Mixture. The effect of the lepidopteran-active protein mixture on

the insecticidal toxicity of the coleopteran-active protein mixture

was examined using CPB bioassays. Two doses of the coleopteran-

active protein mixture, alone and in combination with the high dose

of the lepidopteran-active protein mixture (Supp Table 7 [online

only]), were used in three independent bioassays (giving three 24-

well plates for each treatment or control being tested).

The mortality responses of CPB exposed to the coleopteran-active

protein mixture alone were compared with the responses of CPB

exposed to the coleopteran-active protein mixture combined with the

lepidopteran-active protein mixture. The protein interaction bioassays

were set up using the same procedures and conditions described in

Phase I CPB bioassays. The ECB high dose (alone) was used as a nega-

tive control to exclude any nonspecific effects of the lepidopteran-

active protein mixture on CPB. Additional negative controls included

the buffers used in the preparations of both the coleopteran-active pro-

tein mixture and the combination of the lepidopteran-active protein

mixture þ the coleopteran-active protein mixture. A positive control

using ECB high dose against ECB was included to confirm the biologi-

cal activity of the lepidopteran-active protein mixture. Mortality was

assessed at 120h after treatment initiation.

Data Analyses to Determine the Interaction Among a Mixture of

Cry1Ab1 Vip3Aa201 Cry1F or a Mixture of eCry3.1Ab1

mCry3A Using the Colby Method

In phase I insecticidal protein bioassays, responses to the individual

proteins were evaluated as percent mortalities and used to predict

the mortality for protein combinations according to the Colby

method (Colby 1967). The percent mortality was corrected accord-

ing to the mortality observed in a negative control using Abbott’s

formula1 (Abbott 1925). The presence of any synergistic or antago-

nistic interaction between the proteins within a mixture (e.g.,

lepidopteran-active Cry1Ab þ Vip3Aa20 þ Cry1F or coleopteran-

active eCry3.1Ab þ mCry3A) was evaluated by comparing the

predicted with the observed responses following exposure to the

respective protein mixture. Predicted responses were calculated

based on an assumption of independent modes of action. If compo-

nent A alone gives x% effect and component B alone gives y%

effect, then under the assumption of independent modes of action, the

predicted response to A þ B is x þ y – (xy/100). For Cry1Ab,

Vip3Aa20, and Cry1F, if component A alone gives x% effect, compo-

nent B alone gives y% effect and component C alone gives z% effect,

then under the assumption of independent action, the predicted

response to A þ B þ C is x þ y þ z – [(xy þ xz þ yz)/100]þ (xyz/

10,000). Three independent bioassays were conducted for ECB, FAW,

or CPB larvae with the individual and combined protein treatments

tested concurrently in each assay, then used to obtain the respective

averages for observed versus expected mortalities.

Statistical Analysis to Determine the Interaction for Combinations

of the Lepidopteran- and Coleopteran-Active Protein Mixtures

In phase II insecticidal protein bioassays, using a combination of the

lepidopteran- and coleopteran-active protein mixtures, data were

subjected to analysis of variance using the following model:

Yijk ¼ U þ Di þ Ij þ Tk þ DIij þ eijk

where Yijk, observed % mortality; U, overall mean; Di, dose effect

of the active ingredient; Ij, inactive ingredient effect; Tk, effect of

test;DIij, dose � inactive ingredient interaction; eijk, residual error.

For each protein interaction bioassay, F-tests were used to assess

the statistical significance of the effects of dose (treatment

concentration), inactive ingredient, and dose � inactive ingredient

interaction at the customary 0.05 probability level. The software

used for the statistical analysis was SAS, version 9.2 (SAS Institute,

Inc., Cary NC).

1 Abbott’s formula for control mortality: (% treatment mortality � %

control mortality) / (100 � % control mortality) � 100.
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Results

Phase I Insecticidal Bioassays

Testing for Interaction of Lepidopteran-Active Cry1Ab, Cry1F, and

Vip3Aa20 Insecticidal Proteins. The insecticidal activity of Cry1Ab,

Vip3Aa20 and Cry1F individually and in a mixture was assessed for

ECB (Table 2) and FAW larvae (Table 3). Dose-responses were evi-

dent for the individual proteins as well as the mixtures, except, as

expected, in the case of individually tested Vip3Aa20 against ECB

(Table 2), or individually tested Cry1Ab against FAW (Table 3).

These results provided additional internal negative controls as little

or no activity was expected for those respective tests based on the

insect susceptibility as described previously. Average mortality in

the buffer negative control assays was below 3 or 5% for ECB and

FAW, respectively (data not shown).

The results of the bioassays for the proteins individually were

used to calculate the respective expected mortality in the mixture

treatments for either ECB or FAW larvae (Tables 2 and 3) using

Colby’s formula. The difference between the observed mortality and

expected mortality (Fig. 2) was used to determine any interaction of

Cry1Ab, Vip3Aa20, and Cry1F in combination.

The difference between the observed and expected mortalities

was very small across all dilutions (Fig. 2) with the greatest differen-

tial at just over 20%, and for only 1 out of 9 comparisons. In addi-

tion, there was no consistent pattern in the difference between

observed and expected mortalities for either ECB or FAW larvae

across the respective serial dilution series (Fig. 2). These results do

not indicate any synergism or antagonism between Cry1Ab,

Vip3Aa20, and Cry1F for either susceptible species.

Testing for Interaction of Coleopteran-Active eCry3.1Ab and

mCry3A Insecticidal Proteins. The insecticidal activity of

eCry3.1Ab and mCry3A individually and in a mixture was assessed

for CPB larvae (Table 4). Dose-responses were evident for the indi-

vidual proteins as well as the mixtures, but the mortality observed

tended to be in the lower half of the response range. Average mortal-

ity in the buffer negative control assays was below 7% (data not

shown).

The results of the bioassays for the proteins individually were

used to calculate the expected mortality in the mixture treatments

for CPB larvae (Table 4) using the Colby formula as described previ-

ously. The difference between the observed mortality and expected

mortality (Fig. 3) was used to determine any interaction of

eCry3.1Ab and mCry3A in combination.

The difference between the observed and expected mortalities

for the combination of eCry3.1Ab and mCry3A was very small

across all dilutions (Fig. 3) with the greatest differential at just under

22%. There was a consistent pattern in the difference between

observed and expected mortalities of lower than expected mortality

in the CPB exposed to the protein mixture as compared with the

individual protein treatments. This result suggests some slight degree

of antagonistic interaction between eCry3.1Ab and mCry3A for the

CPB larvae.

Phase II Insecticidal Bioassays

Dose–Response of the Lepidopteran-Active Protein Mixture Using

ECB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. The mortalities for the

lepidopteran-active protein mixture (concentrations ranking from

1X to X/128) were assessed and a clear dose–response was evident

with a decrease in activity corresponding to the dilution series (Fig.

4), but with no effect at the lowest concentration (X/128). The nega-

tive control showed a low mortality of 4.3% (data not shown).

Table 2. Insecticidal activity of Cry1Ab, Vip3Aa20 and Cry1F against

ECB at 120 h after treatment

Test protein Protein conc.

(ng/ml)

%Mortality

(observed)a
% Mortality

(expected)

Cry1Ab 200 66.7 N/A

100 43.1

50 45.1

25 13.9

12.5 5.6

Vip3Aa20 100 0.0 N/A

50 2.8

25 7.0

12.5 0.0

6.3 2.8

Cry1F 400 62.5 N/A

200 37.5

100 6.9

50 1.4

25 4.2

Test mixtureb A 80.0 87.5

A/2 85.7 65.4

A/4 52.8 52.5

A/8 22.1 15.1

A/16 5.7 12.0

a All data were corrected for buffer control mortality using Abbott’s

formula.
b The test mixture A was composed of 200, 100, and 400ng/ml diet of

Cry1Ab, Vip3Aa20, and Cry1F, respectively, as described in theMethods section.

Table 3. Insecticidal activity of Cry1Ab, Vip3Aa20 and Cry1F against

FAW at 120 h after treatment

Test protein Protein concn.

(ng/ml)

% Mortality

(observed)a
% Mortality

(expected)

Cry1Ab 200 0.0 N/A

100 0.0

50 4.4

25 5.8

12.5 0.0

Vip3Aa20 400 60.9 N/A

200 51.5

100 44.1

50 14.5

25 5.8

Cry1F 2,000 76.8 N/A

1,000 53.6

500 37.7

250 15.0

125 13.0

Test mixtureb B 91.3 90.9

B/2 85.5 77.5

B/4 71.0 66.7

B/8 47.1 31.5

B/16 20.3 18.0

a All data were corrected for buffer control mortality using Abbott’s

formula.
b The test mixture B was composed of 200, 400, and 2,000 ng/ml diet of

Cry1Ab, Vip3Aa20, and Cry1F, respectively, as described in the Methods

section.
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Two concentrations of the lepidopteran-active protein mixture

that showed intermediate levels of response, one around the 30%

mortality response (ECB low dose) and one around the 60% mortal-

ity response (ECB high dose) were identified at X/16 (25 ng Cry1Ab

þ 12.5 ng Vip3Aa20 þ 50ng Cry1F/ml diet) and X/8 (50ng Cry1Ab

þ 25ng Vip3Aa20 þ 100ng Cry1F/ml diet), respectively (Fig. 4).

Dose–Response of the Coleopteran-Active Protein Mixture Using

CPB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. The mortalities for the

coleopteran-active protein mixture (concentrations ranking from 1X

to X/128) were assessed and a clear dose-response was evident cor-

responding to the dilution series across the X to X/16 concentrations

tested (Fig. 5). The X/32, X/64, and X/128 dilutions also showed

minimal mortality, similar to the X/16 concentration. The negative

control showed a low mortality of 4.2% (data not shown).

Two concentrations of the coleopteran-active protein mixture

that showed intermediate levels of response, one around the 30%

mortality response (CPB low dose) and one around the 60%

mortality response (CPB high dose) were identified at X/8 (1 mg

mCry3A þ 1 mg eCry3.1Ab/ml diet) and X/2 (4 mg mCry3A þ 4 mg
eCry3.1Ab/ml diet), respectively (Fig. 5).

Testing for Effects of the Coleopteran-Active Protein Mixture on the

Mortality of ECB Exposed to the Lepidopteran-Active Protein

Mixture. The percent mortality of ECB for the lepidopteran-active

protein mixture alone was near the targeted mortality for the ECB

low dose (26.8%, with �30% mortality as the target, based on the

preliminary dose–response), and slightly above the targeted mortal-

ity for the ECB high dose (76%, with �60% mortality as the target)

across the three independent bioassays (Table 5). Similar results

were observed when these data were compared with the respective

ECB low dose or ECB high dose in combination with the

coleopteran-active protein mixture (i.e. plus the CPB high dose)

(Tables 5 and 6).

The positive control (CPB high dose against CPB) had an average

of 61.8% mortality (Table 7), confirming the biological activity of

the coleopteran-active protein mixture for this interaction testing. In

contrast, the negative control diet treated with CPB high dose

(alone) (Table 5) showed an average of only 8.4% mortality, which

confirmed the absence of nonspecific effects derived from

eCry3.1Ab and mCry3A on the ECB larvae. The two buffer negative

control diets showed an average of only 5.6 or 2.8% mortality,

respectively. Although the dose effect for the lepidopteran-active

protein mixture on ECB mortality (i.e., the ECB low dose vs. high

dose) was significant, as intended, there were no statistically signifi-

cant effects with the addition of the inactive ingredient (CPB high

dose) and no statistically significant “Dose � Inactive ingredient”

interactions detected (Table 6). The results of this experiment dem-

onstrate that the coleopteran-active protein mixture had no effect on

the level of mortality produced by the lepidopteran-active protein

mixture against ECB.

Testing for Effects of the Lepidopteran-Active Protein Mixture on

the Mortality of CPB Exposed to the Coleopteran-Active Protein

Mixture. The percent mortality of CPB for the coleopteran-active

protein mixture alone was near the targeted mortality for the CPB

high dose (61.8%, with �60% mortality as the target, based on the

preliminary dose–response), and slightly above the targeted mortal-

ity for the CPB low dose (51.4%, with �30% mortality as the tar-

get) across the three independent bioassays (Table 7). Similar results

were observed when these data were compared with the respective

CPB low dose or CPB high dose in combination with the

lepidopteran-active protein mixture (i.e., plus the ECB high dose)

(Tables 7 and 8).

Table 4. Insecticidal activity of eCry3.1Ab and mCry3A against CPB

at 120h after treatment

Test protein Protein concn.

(mg/ml)

% Mortality

(observed)a
% Mortality

(expected)

eCry3.1Ab 4 46.3 N/A

2 38.8

1 40.3

0.5 29.9

0.25 17.9

mCry3A 4 41.8 N/A

2 46.3

1 20.9

0.5 25.4

0.25 23.9

Test mixtureb X 53.8 73.1

X/2 52.3 74.4

X/4 38.8 51.6

X/8 23.9 43.2

X/16 20.9 39.8

a All the data were corrected for control mortality using Abbott’s formula.
b The test mixture X was composed of 4lg/ml diet of eCry3.1Ab plus 4lg/ml

diet of mCry3A, as described in the Methods section.
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Fig. 2. Difference between the observed and expected mortality for ECB or FAW on diets containing mixtures of Cry1Ab þ Vip3Aa20 þ Cry1F 120hours after treat-

ment. X refers to the A or B undiluted mixture as described in the Methods section for ECB or FAW, respectively. X/2 to X/16 refers to serial dilutions for each

respective mixture.
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Results

Phase I Insecticidal Bioassays

Testing for Interaction of Lepidopteran-Active Cry1Ab, Cry1F, and

Vip3Aa20 Insecticidal Proteins. The insecticidal activity of Cry1Ab,

Vip3Aa20 and Cry1F individually and in a mixture was assessed for

ECB (Table 2) and FAW larvae (Table 3). Dose-responses were evi-

dent for the individual proteins as well as the mixtures, except, as

expected, in the case of individually tested Vip3Aa20 against ECB

(Table 2), or individually tested Cry1Ab against FAW (Table 3).

These results provided additional internal negative controls as little

or no activity was expected for those respective tests based on the

insect susceptibility as described previously. Average mortality in

the buffer negative control assays was below 3 or 5% for ECB and

FAW, respectively (data not shown).

The results of the bioassays for the proteins individually were

used to calculate the respective expected mortality in the mixture

treatments for either ECB or FAW larvae (Tables 2 and 3) using

Colby’s formula. The difference between the observed mortality and

expected mortality (Fig. 2) was used to determine any interaction of

Cry1Ab, Vip3Aa20, and Cry1F in combination.

The difference between the observed and expected mortalities

was very small across all dilutions (Fig. 2) with the greatest differen-

tial at just over 20%, and for only 1 out of 9 comparisons. In addi-

tion, there was no consistent pattern in the difference between

observed and expected mortalities for either ECB or FAW larvae

across the respective serial dilution series (Fig. 2). These results do

not indicate any synergism or antagonism between Cry1Ab,

Vip3Aa20, and Cry1F for either susceptible species.

Testing for Interaction of Coleopteran-Active eCry3.1Ab and

mCry3A Insecticidal Proteins. The insecticidal activity of

eCry3.1Ab and mCry3A individually and in a mixture was assessed

for CPB larvae (Table 4). Dose-responses were evident for the indi-

vidual proteins as well as the mixtures, but the mortality observed

tended to be in the lower half of the response range. Average mortal-

ity in the buffer negative control assays was below 7% (data not

shown).

The results of the bioassays for the proteins individually were

used to calculate the expected mortality in the mixture treatments

for CPB larvae (Table 4) using the Colby formula as described previ-

ously. The difference between the observed mortality and expected

mortality (Fig. 3) was used to determine any interaction of

eCry3.1Ab and mCry3A in combination.

The difference between the observed and expected mortalities

for the combination of eCry3.1Ab and mCry3A was very small

across all dilutions (Fig. 3) with the greatest differential at just under

22%. There was a consistent pattern in the difference between

observed and expected mortalities of lower than expected mortality

in the CPB exposed to the protein mixture as compared with the

individual protein treatments. This result suggests some slight degree

of antagonistic interaction between eCry3.1Ab and mCry3A for the

CPB larvae.

Phase II Insecticidal Bioassays

Dose–Response of the Lepidopteran-Active Protein Mixture Using

ECB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. The mortalities for the

lepidopteran-active protein mixture (concentrations ranking from

1X to X/128) were assessed and a clear dose–response was evident

with a decrease in activity corresponding to the dilution series (Fig.

4), but with no effect at the lowest concentration (X/128). The nega-

tive control showed a low mortality of 4.3% (data not shown).

Table 2. Insecticidal activity of Cry1Ab, Vip3Aa20 and Cry1F against

ECB at 120 h after treatment

Test protein Protein conc.

(ng/ml)

%Mortality

(observed)a
% Mortality

(expected)

Cry1Ab 200 66.7 N/A

100 43.1

50 45.1

25 13.9

12.5 5.6

Vip3Aa20 100 0.0 N/A

50 2.8

25 7.0

12.5 0.0

6.3 2.8

Cry1F 400 62.5 N/A

200 37.5

100 6.9

50 1.4

25 4.2

Test mixtureb A 80.0 87.5

A/2 85.7 65.4

A/4 52.8 52.5

A/8 22.1 15.1

A/16 5.7 12.0

a All data were corrected for buffer control mortality using Abbott’s

formula.
b The test mixture A was composed of 200, 100, and 400ng/ml diet of

Cry1Ab, Vip3Aa20, and Cry1F, respectively, as described in theMethods section.

Table 3. Insecticidal activity of Cry1Ab, Vip3Aa20 and Cry1F against

FAW at 120 h after treatment

Test protein Protein concn.

(ng/ml)

% Mortality

(observed)a
% Mortality

(expected)

Cry1Ab 200 0.0 N/A

100 0.0

50 4.4

25 5.8

12.5 0.0

Vip3Aa20 400 60.9 N/A

200 51.5

100 44.1

50 14.5

25 5.8

Cry1F 2,000 76.8 N/A

1,000 53.6

500 37.7

250 15.0

125 13.0

Test mixtureb B 91.3 90.9

B/2 85.5 77.5

B/4 71.0 66.7

B/8 47.1 31.5

B/16 20.3 18.0

a All data were corrected for buffer control mortality using Abbott’s

formula.
b The test mixture B was composed of 200, 400, and 2,000 ng/ml diet of

Cry1Ab, Vip3Aa20, and Cry1F, respectively, as described in the Methods

section.
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Two concentrations of the lepidopteran-active protein mixture

that showed intermediate levels of response, one around the 30%

mortality response (ECB low dose) and one around the 60% mortal-

ity response (ECB high dose) were identified at X/16 (25 ng Cry1Ab

þ 12.5 ng Vip3Aa20 þ 50ng Cry1F/ml diet) and X/8 (50ng Cry1Ab

þ 25ng Vip3Aa20 þ 100ng Cry1F/ml diet), respectively (Fig. 4).

Dose–Response of the Coleopteran-Active Protein Mixture Using

CPB to Establish Two Intermediate Mortality Doses (Projected

LC30 and LC60) for the Combined Lepidopteran- and Coleopteran-

Active Mixture Interaction Testing. The mortalities for the

coleopteran-active protein mixture (concentrations ranking from 1X

to X/128) were assessed and a clear dose-response was evident cor-

responding to the dilution series across the X to X/16 concentrations

tested (Fig. 5). The X/32, X/64, and X/128 dilutions also showed

minimal mortality, similar to the X/16 concentration. The negative

control showed a low mortality of 4.2% (data not shown).

Two concentrations of the coleopteran-active protein mixture

that showed intermediate levels of response, one around the 30%

mortality response (CPB low dose) and one around the 60%

mortality response (CPB high dose) were identified at X/8 (1 mg

mCry3A þ 1 mg eCry3.1Ab/ml diet) and X/2 (4 mg mCry3A þ 4 mg
eCry3.1Ab/ml diet), respectively (Fig. 5).

Testing for Effects of the Coleopteran-Active Protein Mixture on the

Mortality of ECB Exposed to the Lepidopteran-Active Protein

Mixture. The percent mortality of ECB for the lepidopteran-active

protein mixture alone was near the targeted mortality for the ECB

low dose (26.8%, with �30% mortality as the target, based on the

preliminary dose–response), and slightly above the targeted mortal-

ity for the ECB high dose (76%, with �60% mortality as the target)

across the three independent bioassays (Table 5). Similar results

were observed when these data were compared with the respective

ECB low dose or ECB high dose in combination with the

coleopteran-active protein mixture (i.e. plus the CPB high dose)

(Tables 5 and 6).

The positive control (CPB high dose against CPB) had an average

of 61.8% mortality (Table 7), confirming the biological activity of

the coleopteran-active protein mixture for this interaction testing. In

contrast, the negative control diet treated with CPB high dose

(alone) (Table 5) showed an average of only 8.4% mortality, which

confirmed the absence of nonspecific effects derived from

eCry3.1Ab and mCry3A on the ECB larvae. The two buffer negative

control diets showed an average of only 5.6 or 2.8% mortality,

respectively. Although the dose effect for the lepidopteran-active

protein mixture on ECB mortality (i.e., the ECB low dose vs. high

dose) was significant, as intended, there were no statistically signifi-

cant effects with the addition of the inactive ingredient (CPB high

dose) and no statistically significant “Dose � Inactive ingredient”

interactions detected (Table 6). The results of this experiment dem-

onstrate that the coleopteran-active protein mixture had no effect on

the level of mortality produced by the lepidopteran-active protein

mixture against ECB.

Testing for Effects of the Lepidopteran-Active Protein Mixture on

the Mortality of CPB Exposed to the Coleopteran-Active Protein

Mixture. The percent mortality of CPB for the coleopteran-active

protein mixture alone was near the targeted mortality for the CPB

high dose (61.8%, with �60% mortality as the target, based on the

preliminary dose–response), and slightly above the targeted mortal-

ity for the CPB low dose (51.4%, with �30% mortality as the tar-

get) across the three independent bioassays (Table 7). Similar results

were observed when these data were compared with the respective

CPB low dose or CPB high dose in combination with the

lepidopteran-active protein mixture (i.e., plus the ECB high dose)

(Tables 7 and 8).

Table 4. Insecticidal activity of eCry3.1Ab and mCry3A against CPB

at 120h after treatment

Test protein Protein concn.

(mg/ml)

% Mortality

(observed)a
% Mortality

(expected)

eCry3.1Ab 4 46.3 N/A

2 38.8

1 40.3

0.5 29.9

0.25 17.9

mCry3A 4 41.8 N/A

2 46.3

1 20.9

0.5 25.4

0.25 23.9

Test mixtureb X 53.8 73.1

X/2 52.3 74.4

X/4 38.8 51.6

X/8 23.9 43.2

X/16 20.9 39.8

a All the data were corrected for control mortality using Abbott’s formula.
b The test mixture X was composed of 4lg/ml diet of eCry3.1Ab plus 4lg/ml

diet of mCry3A, as described in the Methods section.
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Fig. 2. Difference between the observed and expected mortality for ECB or FAW on diets containing mixtures of Cry1Ab þ Vip3Aa20 þ Cry1F 120hours after treat-

ment. X refers to the A or B undiluted mixture as described in the Methods section for ECB or FAW, respectively. X/2 to X/16 refers to serial dilutions for each

respective mixture.
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The positive control (ECB high dose against ECB) had an aver-

age of 76.0% mortality (Table 5), confirming the biological activity

of the lepidopteran-active protein mixture for this interaction test-

ing. In contrast, the negative control diet treated with ECB high

dose (alone) (Table 7) showed an average of only 4.2% mortality,

which confirmed the absence of nonspecific effects derived from

Cry1Ab, Vip3Aa20, and Cry1F on the CPB larvae. The two buffer

negative control diets showed an average of only 4.2 or 6.9%

mortality, respectively. Although the dose effect for the

coleopteran-active protein mixture on CPB mortality was signifi-

cant, as expected (i.e., the CPB low dose vs. high dose), there were

no statistically significant effects with the addition of the inactive

ingredient (ECB high dose) and no statistically significant “Dose �
Inactive ingredient” interactions detected (Table 8). The results of

this experiment demonstrate that the lepidopteran-active protein

mixture had no effect on the level of mortality produced by the

coleopteran-active protein mixture against CPB.

Discussion

An efficient and streamlined methodology was constructed to inves-

tigate potential interactions among multiple insecticidal proteins

that employ different modes of action and/or are active against dif-

ferent insect spectra or orders (e.g., insect pests from the orders

Lepidoptera or Coleoptera). This approach builds on previous meth-

ods and examples that involved fewer insecticidal proteins and/or

less complex combinations (e.g., Raybould et al. 2012) and captures

a way forward for future more complex interaction testing needs.

For the context of these type of investigations, we adopted the most

widely interpreted definition of a “different” mode of action which

is used for resistance management practices, that it is related to two

insecticidal proteins displaying differential in vitro binding to the

gut membranes of the target pest (e.g., a lack of heterologous com-

petition in a binding assay, or the demonstration of unique binding

sites being present) (Schnepf et al. 1998, Bravo et al. 2011,
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Fig. 3. Difference between observed and expected mortality of CPB on diet containing a mixture of eCry3.1Ab and mCry3A after 120h. X refers to the undiluted

mixture as described in the Methods. X/2 to X/16 refers to serial dilutions for the mixture.
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Fig. 4. Percent mortality of ECB exposed to the lepidopteran-active protein mixture treatments. Treatment X contains 400ng Cry1Ab þ 200ng Vip3Aa20 þ 800ng

Cry1F per ml diet as described in the Methods section.
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Fig. 5. Percent mortality of CPB exposed to the coleopteran-active protein

mixture treatments. Treatment X contains 8 mg mCry3A þ 8 mg eCry3.1Ab per

ml diet as described in the Methods section.
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Hern�andez-Rodr�ıguez et al. 2013, Lucena et al. 2014). Although

we illustrated the feasibility of this interaction testing method

using lepidopteran-active protein mixtures and coleopteran-active

protein mixtures, one could modify this framework for other mix-

ture needs.

In phase I of our interaction testing approach, the Colby method

was used as a straightforward tool for testing mixtures where the

distinct modes of action for the insecticidal proteins has been estab-

lished. When using the Colby method, it has been noted that it is

most accurate when responses to the individual components are

near the 50% response level (Gisi et al. 1985); this guidance was

contained within our dilution series design that generated multiple

response points within 625% of that target response level for each

protein and the mixtures tested (Tables 2–4). Although the Colby

method has been criticized in some applications, in terms of its

ability to quantify the degree of any interaction which is found

(Morse 1978, Nespeca 1997), or its potential to be too liberal in

terms of generating false positives in the detection of synergism

(Foucquier and Guedj 2015), it remains quite useful to reliably

detect gross effects which is really the focus of the interaction testing

for risk assessment purposes. In addition, any tendency toward false

positives by the Colby method actually provides a highly rigorous

test of the hypothesis under consideration for risk assessment (i.e.,

that there is no synergism).

There was no evidence for synergistic or antagonistic effects

upon combining Cry1Ab, Vip3Aa20, and Cry1F in bioassays using

the two sensitive Lepidoptera test organisms, ECB or FAW. These

results corroborate the hypothesis of no antagonism or synergism

Table 5. Effect of the coleopteran-active protein mixture on the

insecticidal activity of the lepidopteran-active protein mixture

using ECB

Treatmenta Mortality (%)

Test 1 Test 2 Test 3 Mean

ECB low dosea 25.0 26.1 29.2 26.8

ECB low dose þ CPB high dose 20.8 45.8 20.8 29.1

ECB high dose 70.8 69.6 87.5 76.0

ECB high dose þ CPB high dose 58.3 73.9 79.2 70.5

CPB high dose 4.3 4.2 16.7 8.4

Negative control 1 4.2 4.2 8.3 5.6

Negative control 2 4.2 0.0 4.2 2.8

a Respective low and high dose treatments as defined in preceding sections

earlier. Negative control 1 equals 20mM CAPS pH 10.5 buffer, negative con-

trol 2 equals mixture of 20mM CAPS (pH 10.5) þ 10mM ammonium bicar-

bonate (pH 10.0) þ purified water.

Table 6. Statistical analysis of the ECB bioassay to investigate the

effect of the coleopteran-active protein mixture on the insecticidal

activity of the lepidopteran-active protein mixture

Dose x Inactiv ingredient Mean % mortality

ECB low dose Absent 26.8

ECB low dose CPB high dose 29.1

ECB high dose Absent 76.0

ECB high dose CPB high dose 70.5

Mean of dose across

inactive ingredienta

ECB low dose 28.0

ECB high dose 73.2

Mean of inactive ingredient

across doseb

Absent 51.4

CPB high dose 49.8

F-test probabilitiesc

Dose (active ingredient) <0.001

Inactive ingredient 0.792

Dose � Inactive ingredient 0.514

Standard deviation 9.8

a The percent mortality for each respective ECB dose was averaged across

the absence or presence of the inactive ingredient (CPB high dose).
b The percent mortality for either the absence or presence of the inactive

ingredient (CPB high dose), respectively, was averaged across the two ECB

doses.
c Significance level of a¼ 0.05; df¼ 11.

Table 7. Effect of the lepidopteran-active protein mixture on the

insecticidal activity of the coleopteran-active protein mixture using

CPB

CPB mortality (%)

Treatmenta Test 1 Test 2 Test 3 Mean

CPB low dosea 66.7 45.8 41.7 51.4

CPB low dose þ ECB high dose 58.3 54.2 33.3 48.6

CPB high dose 75.0 62.5 47.8 61.8

CPB high dose þ ECB high dose 87.5 70.8 87.5 81.9

ECB high dose 0.0 4.2 8.3 4.2

Negative control 1 0.0 8.3 4.2 4.2

Negative control 2 4.2 8.3 8.3 6.9

a Respective low dose and high dose treatments as defined in preceding sec-

tions earlier. Negative control 1 equals mixture of 10mM ammonium bicar-

bonate (pH 10.0) þ purified water, negative control 2 equals mixture of

20mM CAPS (pH 10.5) þ 10mM ammonium bicarbonate (pH 10.0) þ puri-

fied water.

Table 8. Statistical analysis of the CPB bioassay to investigate the

effect of the lepidopteran-active protein mixture on the insecticidal

activity of the coleopteran-active protein mixture

Dose x Inactive Ingredient Mean % mortality

CPB low dose Absent 51.4

CPB low dose ECB high dose 48.6

CPB high dose Absent 61.8

CPB high dose ECB high dose 81.9

Mean of dose across

inactive ingredienta

CPB low dose 50.0

CPB high dose 71.9

Mean of inactive ingredient

across doseb

Absent 56.6

ECB high dose 65.3

F-test probabilitiesc

Dose (active ingredient) 0.006

Inactive ingredient 0.147

Dose x Inactive ingredient 0.070

Standard deviation 9.0

a The percent mortality for each respective CPB dose was averaged across

the absence or presence of the inactive ingredient (ECB high dose).
b The percent mortality for either the absence or presence of the inactive

ingredient (ECB high dose), respectively, was averaged across the two CPB

doses.
c Significance level of a¼ 0.05; df¼ 11.
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The positive control (ECB high dose against ECB) had an aver-

age of 76.0% mortality (Table 5), confirming the biological activity

of the lepidopteran-active protein mixture for this interaction test-

ing. In contrast, the negative control diet treated with ECB high

dose (alone) (Table 7) showed an average of only 4.2% mortality,

which confirmed the absence of nonspecific effects derived from

Cry1Ab, Vip3Aa20, and Cry1F on the CPB larvae. The two buffer

negative control diets showed an average of only 4.2 or 6.9%

mortality, respectively. Although the dose effect for the

coleopteran-active protein mixture on CPB mortality was signifi-

cant, as expected (i.e., the CPB low dose vs. high dose), there were

no statistically significant effects with the addition of the inactive

ingredient (ECB high dose) and no statistically significant “Dose �
Inactive ingredient” interactions detected (Table 8). The results of

this experiment demonstrate that the lepidopteran-active protein

mixture had no effect on the level of mortality produced by the

coleopteran-active protein mixture against CPB.

Discussion

An efficient and streamlined methodology was constructed to inves-

tigate potential interactions among multiple insecticidal proteins

that employ different modes of action and/or are active against dif-

ferent insect spectra or orders (e.g., insect pests from the orders

Lepidoptera or Coleoptera). This approach builds on previous meth-

ods and examples that involved fewer insecticidal proteins and/or

less complex combinations (e.g., Raybould et al. 2012) and captures

a way forward for future more complex interaction testing needs.

For the context of these type of investigations, we adopted the most

widely interpreted definition of a “different” mode of action which

is used for resistance management practices, that it is related to two

insecticidal proteins displaying differential in vitro binding to the

gut membranes of the target pest (e.g., a lack of heterologous com-

petition in a binding assay, or the demonstration of unique binding

sites being present) (Schnepf et al. 1998, Bravo et al. 2011,
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Fig. 3. Difference between observed and expected mortality of CPB on diet containing a mixture of eCry3.1Ab and mCry3A after 120h. X refers to the undiluted

mixture as described in the Methods. X/2 to X/16 refers to serial dilutions for the mixture.
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Fig. 4. Percent mortality of ECB exposed to the lepidopteran-active protein mixture treatments. Treatment X contains 400ng Cry1Ab þ 200ng Vip3Aa20 þ 800ng

Cry1F per ml diet as described in the Methods section.
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mixture treatments. Treatment X contains 8 mg mCry3A þ 8 mg eCry3.1Ab per

ml diet as described in the Methods section.
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Hern�andez-Rodr�ıguez et al. 2013, Lucena et al. 2014). Although

we illustrated the feasibility of this interaction testing method

using lepidopteran-active protein mixtures and coleopteran-active

protein mixtures, one could modify this framework for other mix-

ture needs.

In phase I of our interaction testing approach, the Colby method

was used as a straightforward tool for testing mixtures where the

distinct modes of action for the insecticidal proteins has been estab-

lished. When using the Colby method, it has been noted that it is

most accurate when responses to the individual components are

near the 50% response level (Gisi et al. 1985); this guidance was

contained within our dilution series design that generated multiple

response points within 625% of that target response level for each

protein and the mixtures tested (Tables 2–4). Although the Colby

method has been criticized in some applications, in terms of its

ability to quantify the degree of any interaction which is found

(Morse 1978, Nespeca 1997), or its potential to be too liberal in

terms of generating false positives in the detection of synergism

(Foucquier and Guedj 2015), it remains quite useful to reliably

detect gross effects which is really the focus of the interaction testing

for risk assessment purposes. In addition, any tendency toward false

positives by the Colby method actually provides a highly rigorous

test of the hypothesis under consideration for risk assessment (i.e.,

that there is no synergism).

There was no evidence for synergistic or antagonistic effects

upon combining Cry1Ab, Vip3Aa20, and Cry1F in bioassays using

the two sensitive Lepidoptera test organisms, ECB or FAW. These

results corroborate the hypothesis of no antagonism or synergism

Table 5. Effect of the coleopteran-active protein mixture on the

insecticidal activity of the lepidopteran-active protein mixture

using ECB

Treatmenta Mortality (%)

Test 1 Test 2 Test 3 Mean

ECB low dosea 25.0 26.1 29.2 26.8

ECB low dose þ CPB high dose 20.8 45.8 20.8 29.1

ECB high dose 70.8 69.6 87.5 76.0

ECB high dose þ CPB high dose 58.3 73.9 79.2 70.5

CPB high dose 4.3 4.2 16.7 8.4

Negative control 1 4.2 4.2 8.3 5.6

Negative control 2 4.2 0.0 4.2 2.8

a Respective low and high dose treatments as defined in preceding sections

earlier. Negative control 1 equals 20mM CAPS pH 10.5 buffer, negative con-

trol 2 equals mixture of 20mM CAPS (pH 10.5) þ 10mM ammonium bicar-

bonate (pH 10.0) þ purified water.

Table 6. Statistical analysis of the ECB bioassay to investigate the

effect of the coleopteran-active protein mixture on the insecticidal

activity of the lepidopteran-active protein mixture

Dose x Inactiv ingredient Mean % mortality

ECB low dose Absent 26.8

ECB low dose CPB high dose 29.1

ECB high dose Absent 76.0

ECB high dose CPB high dose 70.5

Mean of dose across

inactive ingredienta

ECB low dose 28.0

ECB high dose 73.2

Mean of inactive ingredient

across doseb

Absent 51.4

CPB high dose 49.8

F-test probabilitiesc

Dose (active ingredient) <0.001

Inactive ingredient 0.792

Dose � Inactive ingredient 0.514

Standard deviation 9.8

a The percent mortality for each respective ECB dose was averaged across

the absence or presence of the inactive ingredient (CPB high dose).
b The percent mortality for either the absence or presence of the inactive

ingredient (CPB high dose), respectively, was averaged across the two ECB

doses.
c Significance level of a¼ 0.05; df¼ 11.

Table 7. Effect of the lepidopteran-active protein mixture on the

insecticidal activity of the coleopteran-active protein mixture using

CPB

CPB mortality (%)

Treatmenta Test 1 Test 2 Test 3 Mean

CPB low dosea 66.7 45.8 41.7 51.4

CPB low dose þ ECB high dose 58.3 54.2 33.3 48.6

CPB high dose 75.0 62.5 47.8 61.8

CPB high dose þ ECB high dose 87.5 70.8 87.5 81.9

ECB high dose 0.0 4.2 8.3 4.2

Negative control 1 0.0 8.3 4.2 4.2

Negative control 2 4.2 8.3 8.3 6.9

a Respective low dose and high dose treatments as defined in preceding sec-

tions earlier. Negative control 1 equals mixture of 10mM ammonium bicar-

bonate (pH 10.0) þ purified water, negative control 2 equals mixture of

20mM CAPS (pH 10.5) þ 10mM ammonium bicarbonate (pH 10.0) þ puri-

fied water.

Table 8. Statistical analysis of the CPB bioassay to investigate the

effect of the lepidopteran-active protein mixture on the insecticidal

activity of the coleopteran-active protein mixture

Dose x Inactive Ingredient Mean % mortality

CPB low dose Absent 51.4

CPB low dose ECB high dose 48.6

CPB high dose Absent 61.8

CPB high dose ECB high dose 81.9

Mean of dose across

inactive ingredienta

CPB low dose 50.0

CPB high dose 71.9

Mean of inactive ingredient

across doseb

Absent 56.6

ECB high dose 65.3

F-test probabilitiesc

Dose (active ingredient) 0.006

Inactive ingredient 0.147

Dose x Inactive ingredient 0.070

Standard deviation 9.0

a The percent mortality for each respective CPB dose was averaged across

the absence or presence of the inactive ingredient (ECB high dose).
b The percent mortality for either the absence or presence of the inactive

ingredient (ECB high dose), respectively, was averaged across the two CPB

doses.
c Significance level of a¼ 0.05; df¼ 11.

Journal of Insect Science, 2017, Vol. 17, No. 2 9

D
ow

nloaded from
 https://academ

ic.oup.com
/jinsectscience/article-abstract/17/2/39/3065810 by Edinburgh U

niversity user on 06 August 2019



among Cry1Ab, Vip3Aa20, and Cry1F present in a mixture when

compared with the individual components. A tendency toward

lower mortality was shown with regard to the eCry3.1Ab and

mCry3A protein mixture on CPB than would be expected from the

effects of the proteins alone, which may suggest some slight antago-

nistic interaction with regard to CPB when these proteins are pre-

sented in combination. The nature of this slight effect is uncertain,

however, it is evident that the combination of eCry3.1Ab with

mCry3A proteins in MIR604 � 5307 maize hybrids Agrisure

Duracade (Syngenta Seeds, Inc., Minnetonka, MN) results in a stack

which is highly effective against the WCRW (Hibbard et al. 2011,

Frank et al. 2015).

In phase II of the interaction testing design, the ECB bioassay

results indicate that the coleopteran-active protein mixture does not

affect the activity of the lepidopteran-active protein mixture against

ECB. In addition, the CPB bioassay results indicate that the

lepidopteran-active protein mixture does not affect the activity of

the coleopteran-active protein mixture against CPB. Thus, these two

results together, using two different test species, provide robust test-

ing and corroboration of the hypothesis of no antagonism or syner-

gism among Cry1Ab, Vip3Aa20, Cry1F, eCry3.1Ab, and mCry3A.

These results are not surprising, given the general trends for these

insecticidal protein types. Observation of synergistic interactions

amongst the Bt-derived insecticidal proteins does not appear to be

routine for how these lepidopteran-active and coleopteran-active

proteins act in nature, with relatively few reports of this from

amongst the over 480 Cry1, Cry2, Cry3 and Vip3 proteins identified

to date (Crickmore et al. 2016). Furthermore, previous work indi-

cated no interaction with a combination of Cry1Ab and Vip3A pro-

teins (US EPA 2009b). In contrast, these types of interactions have

been well-documented and routinely included in descriptions of the

function of mosquitocidal Bt proteins (Wirth et al. 1997, Bravo

et al. 2011, Palma et al. 2014). In addition, in those cases where a

synergistic interaction has been reported for the lepidopteran-active

and coleopteran-active Bt proteins, it is often in the range of just a

few-fold or less. Results from laboratory interaction testing that sug-

gest a more minimal increase in activity could be due to real effects

or still represent random variation in the susceptible pest insect bio-

assay data. In either case, the biological relevance would need to be

evaluated for Bt-derived insecticidal proteins in the context of a risk

assessment. That is, those interactions which can be reproducibly

established for insecticidal proteins in a trait stack must be evaluated

for biological relevance in the context of other risk assessment

parameters (e.g., likelihood of a potential route of exposure or the

actual margins of exposure) which often supersede the postulated

synergistic interaction that might occur (Raybould et al. 2012).

A FIFRA Scientific Advisory Panel stated it was “not aware of

any instances where a ‘new’ toxin has been created by unexpected

interaction between two known proteins” (US EPA 2005). In addi-

tion, a 2009U.S. EPA Scientific Advisory Panel observed that “with

respect to Cry1 and Cry3 proteins used in Bt crops, given their pro-

ven safety record, unless a >10-fold degree of synergism is observed,

there would seem to be no need to test for human health or nontar-

get effects” (US EPA 2009c). Nevertheless, the results of these types

of insecticidal protein interaction studies do support the weight-of-

evidence approach for a risk assessment regarding the potential

occurrence of interactions in nonsensitive nontarget species, includ-

ing humans and other animals (Raybould et al. 2012).

Absence of interactions between Cry1Ab, Vip3Aa20, and Cry1F

corroborate the hypothesis that the responses of organisms exposed

to these proteins via cultivation of Bt11 � MIR162 � TC1507 �
MIR604 � 5307 maize hybrids can be reliably predicted from the

effects of the component events. Similarly, slight antagonism

between eCry3.1Ab and mCry3A corroborates the hypothesis that

any adverse effect of a mixture of these proteins would be no greater

than, and potentially less than, the sum of the individual effects of

these proteins. Finally, absence of interactions between (Cry1Ab þ
Vip3A þ Cry1F) and (eCry3.1Ab þ mCry3A) corroborate the

hypothesis that the responses of organisms exposed to these proteins

via cultivation of Bt11 � MIR162 � TC1507 � MIR604 � 5307

maize hybrids can be reliably predicted from the effects of the com-

ponent events.

If product development continues to increase the number of

insecticidal proteins in stacks, it is important to note that the results

from the testing of insecticidal protein mixtures which establishes

them as having no interaction can be used in support of any further

stack assessments which additionally include other combinations of

insecticidal proteins. The future assessment of more complex stacks

that express additional insecticidal proteins would only need to con-

firm that there is no new interaction between the previous mixture

(or a subset of those proteins) and the newly added protein compo-

nent. The previous conclusions regarding interactions for those pro-

teins tested would not be nullified by added components, nor would

it necessitate that all of the previously tested components remain

present in the new complex mixture. In this way, prior data can be

useful to draw inferences for risk assessment as long as the proteins

are present in the “lower order” stack as well as the new complex

mixture.
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among Cry1Ab, Vip3Aa20, and Cry1F present in a mixture when

compared with the individual components. A tendency toward

lower mortality was shown with regard to the eCry3.1Ab and

mCry3A protein mixture on CPB than would be expected from the

effects of the proteins alone, which may suggest some slight antago-

nistic interaction with regard to CPB when these proteins are pre-

sented in combination. The nature of this slight effect is uncertain,

however, it is evident that the combination of eCry3.1Ab with

mCry3A proteins in MIR604 � 5307 maize hybrids Agrisure

Duracade (Syngenta Seeds, Inc., Minnetonka, MN) results in a stack

which is highly effective against the WCRW (Hibbard et al. 2011,

Frank et al. 2015).

In phase II of the interaction testing design, the ECB bioassay

results indicate that the coleopteran-active protein mixture does not

affect the activity of the lepidopteran-active protein mixture against

ECB. In addition, the CPB bioassay results indicate that the

lepidopteran-active protein mixture does not affect the activity of

the coleopteran-active protein mixture against CPB. Thus, these two

results together, using two different test species, provide robust test-

ing and corroboration of the hypothesis of no antagonism or syner-

gism among Cry1Ab, Vip3Aa20, Cry1F, eCry3.1Ab, and mCry3A.

These results are not surprising, given the general trends for these

insecticidal protein types. Observation of synergistic interactions

amongst the Bt-derived insecticidal proteins does not appear to be

routine for how these lepidopteran-active and coleopteran-active

proteins act in nature, with relatively few reports of this from

amongst the over 480 Cry1, Cry2, Cry3 and Vip3 proteins identified

to date (Crickmore et al. 2016). Furthermore, previous work indi-

cated no interaction with a combination of Cry1Ab and Vip3A pro-

teins (US EPA 2009b). In contrast, these types of interactions have

been well-documented and routinely included in descriptions of the

function of mosquitocidal Bt proteins (Wirth et al. 1997, Bravo

et al. 2011, Palma et al. 2014). In addition, in those cases where a

synergistic interaction has been reported for the lepidopteran-active

and coleopteran-active Bt proteins, it is often in the range of just a

few-fold or less. Results from laboratory interaction testing that sug-

gest a more minimal increase in activity could be due to real effects

or still represent random variation in the susceptible pest insect bio-

assay data. In either case, the biological relevance would need to be

evaluated for Bt-derived insecticidal proteins in the context of a risk

assessment. That is, those interactions which can be reproducibly

established for insecticidal proteins in a trait stack must be evaluated

for biological relevance in the context of other risk assessment

parameters (e.g., likelihood of a potential route of exposure or the

actual margins of exposure) which often supersede the postulated

synergistic interaction that might occur (Raybould et al. 2012).

A FIFRA Scientific Advisory Panel stated it was “not aware of

any instances where a ‘new’ toxin has been created by unexpected

interaction between two known proteins” (US EPA 2005). In addi-

tion, a 2009U.S. EPA Scientific Advisory Panel observed that “with

respect to Cry1 and Cry3 proteins used in Bt crops, given their pro-

ven safety record, unless a >10-fold degree of synergism is observed,

there would seem to be no need to test for human health or nontar-

get effects” (US EPA 2009c). Nevertheless, the results of these types

of insecticidal protein interaction studies do support the weight-of-

evidence approach for a risk assessment regarding the potential

occurrence of interactions in nonsensitive nontarget species, includ-

ing humans and other animals (Raybould et al. 2012).

Absence of interactions between Cry1Ab, Vip3Aa20, and Cry1F

corroborate the hypothesis that the responses of organisms exposed

to these proteins via cultivation of Bt11 � MIR162 � TC1507 �
MIR604 � 5307 maize hybrids can be reliably predicted from the

effects of the component events. Similarly, slight antagonism

between eCry3.1Ab and mCry3A corroborates the hypothesis that

any adverse effect of a mixture of these proteins would be no greater

than, and potentially less than, the sum of the individual effects of

these proteins. Finally, absence of interactions between (Cry1Ab þ
Vip3A þ Cry1F) and (eCry3.1Ab þ mCry3A) corroborate the

hypothesis that the responses of organisms exposed to these proteins

via cultivation of Bt11 � MIR162 � TC1507 � MIR604 � 5307

maize hybrids can be reliably predicted from the effects of the com-

ponent events.

If product development continues to increase the number of

insecticidal proteins in stacks, it is important to note that the results

from the testing of insecticidal protein mixtures which establishes

them as having no interaction can be used in support of any further

stack assessments which additionally include other combinations of

insecticidal proteins. The future assessment of more complex stacks

that express additional insecticidal proteins would only need to con-

firm that there is no new interaction between the previous mixture

(or a subset of those proteins) and the newly added protein compo-

nent. The previous conclusions regarding interactions for those pro-

teins tested would not be nullified by added components, nor would

it necessitate that all of the previously tested components remain

present in the new complex mixture. In this way, prior data can be

useful to draw inferences for risk assessment as long as the proteins

are present in the “lower order” stack as well as the new complex

mixture.
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