2,387 research outputs found

    Lamp reliability studies for improved satellite rubidium frequency standard

    Get PDF
    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions

    Critical properties of the double exchange ferromagnet Nd0.4Pb0.4MnO3

    Full text link
    Results of a study of dc-magnetization M(T, H), performed on a Nd0.6Pb0.4MnO3 single crystal in the temperature range around T_C (Curie temperature) which embraces the critical region | epsilon | = |T -T_C |/T_C <= 0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T_C =156.47 +/- 0.06 K and the critical exponents, beta = 0.374 +/- 0.006 (from the temperature dependence of magnetization), and gamma = 1.329 +/- 0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T_C, H) gives delta = 4.547 +/- 0.1. Thus the scaling law gamma+beta=delta beta is fulfilled. The critical exponents obey the single scaling-equation of state M(H, epsilon) = epsilon^b f_+/- (H/epsilon^(beta + gamma)) where, f_+ for T > T_C and f_- for T< T_C. The exponent values are very close to those expected for the universality class of 3D Heisenberg ferromagnets with short-range interactions.Comment: 19 pages, including 6 figure

    Technical Note: Trend estimation from irregularly sampled, correlated data

    Get PDF
    Estimation of a trend of an atmospheric state variable is usually performed by fitting a linear regression line to a set of data of this variable sampled at different times. Often these data are irregularly sampled in space and time and clustered in a sense that error correlations among data points cause a similar error of data points sampled at similar times. Since this can affect the estimated trend, we suggest to take the full error covariance matrix of the data into account. Superimposed periodic variations can be jointly fitted in a straightforward manner, even if the shape of the periodic function is not known. Global data sets, particularly satellite data, can form the basis to estimate the error correlations. State-dependent amplitudes of superimposed periodic corrections result in a non-linear optimization problem which is solved iteratively

    Differential atom interferometry beyond the standard quantum limit

    Full text link
    We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change

    Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    Get PDF
    The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"- double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
    corecore