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Abstract. Estimation of a trend of an atmospheric state vari-
able is usually performed by fitting a linear regression line
to a set of data of this variable sampled at different times.
Often these data are irregularly sampled in space and time
and clustered in a sense that error correlations among data
points cause a similar error of data points sampled at similar
times. Since this can affect the estimated trend, we suggest
to take the full error covariance matrix of the data into ac-
count. Superimposed periodic variations can be jointly fitted
in a straightforward manner, even if the shape of the peri-
odic function is not known. Global data sets, particularly
satellite data, can form the basis to estimate the error correla-
tions. State-dependent amplitudes of superimposed periodic
corrections result in a non-linear optimization problem which
is solved iteratively.

1 Introduction

Correct trend estimation is a key question in the discussion of
climate change (IPCC, 2007). While fitting a straight line to
a sample of data is an almost trivial task, errors in the data set
and non-representativeness of the sample add some difficulty
to the problem. Assuming normally distributed errors which
are uncorrelated over the sample, each data point is simply
weighted by the inverse of its variance to obtain a best lin-
ear unbiased estimate of the trend (Aitken, 1935). Methods
applicable to least squares fitting of data where both the de-
pendent and the independent variables are affected by errors
have recently been reviewed byCantrell(2008).

If the assumption of normal error distribution is question-
able, robust linear regression methods help to reduce the
sensitivity of the trend to outliers in the sample (Muhlbauer
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et al.2009and references therein). Another cure against non-
normality of distributions of residuals are bootstrap methods,
introduced byEfron(1979) as a variant to jackknife methods
and applied to atmospheric trend analysis by, e.g.Cox et al.
(2002), Gardiner et al.(2008) or Vigouroux et al.(2008).

Besides non-normality of the distribution of residuals, cor-
relations between the sampled data are another class of prob-
lems. When using multisite means to infer a trend, the stan-
dard errors of the meansσmeanwhich determine the weight
of each mean in the regression analysis are not the standard
deviationσ of the sample over the sites divided by the square
root of the number of sitesM but

σmean=

√
σ 2

(
1 + (M − 1)r̄inter

M

)
, (1)

where r̄inter is the average intersite correlation coefficient
(Jones et al., 1997). This can easily be verified by multi-
plication of the averaging operator from the left and right to
the intersite covariance matrixSinter according to multivari-
ate Gaussian error propagation:

σ 2
mean,inter = (

1

M
,...,

1

M
)Sinter


1
M
...
1
M

, (2)

where the element at position(i,k) of Sinter is rinter i,kσ
2.

This approach solves the problem of intersite correlations
and is applicable, e.g., if measurements of the same set of
sites are used over the whole period.σmeancalculated under
consideration of̄rinter accounts for the fact that the available
sites do not fully represent the population, i.e., the sample
mean at a given time is not necessarily identical to the global
mean. Since the same set of stations is used over the whole
period, the measurements at the given sites are not a random
sample.

Weatherhead et al.(1998) discuss how autocorrelations of
noise in the data affect the precision of the estimated trend,
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and they provide a practical method to consider these au-
tocorrelations to avoid over-optimistic confidence estimated
with respect to inferred linear trends. Further, these authors
present a tool to estimate the required length of the time se-
ries to significantly detect a trend.

None of these papers, however, tackles the problem of how
to derive trends on the basis of inhomogeneous data sets. In
this technical note, we investigate the problem that the sam-
pled data are clustered in a sense that the data are groupwise
correlated in the time domain. This is the case when data
inhomogeneities cause systematic deviations between sub-
sets of the data of time series. Through irregular sampling
in time, these systematic deviations map onto the time series
as errors correlated in the time domain. A typical example
would be the estimation of a trend of one atmospheric state
variable from measurements at two different latitudes, where
one measurement site dominates the earlier part and the other
measurement site the later part of the time series. The ne-
glected latitudinal dependence of the observed quantity maps
onto the time domain if the atmosphere is irregularly sam-
pled at the different observation sites. Such data sets, where
the target variable depends on further variables (e.g. latitude,
calibration standard) except the independent variable of the
regression analysis (e.g., time), we call inhomogeneous, and
the unconsidered independent variables we call “hidden vari-
ables”. Irregular sampling of inhomogeneous data leads to
clustering, because certain values of the independent vari-
able may go along with certain values of the hidden variable.
This dependence can be formulated as correlations, typically
the larger, the more similar the value of the hidden variable
is. Other reasons for such kind of groupwise correlations, be-
sides latitude-dependence, are: data based on multiple mea-
surement systems relying on different calibration standards
(Engel et al., 2009), combination of data from two measure-
ment systems which cover different episodes like H2O mea-
surements from HALOE (Randel et al., 2004; Rosenlof and
Reid, 2008) and MIPAS (Milz et al., 2005); and data sets
where the operation mode has been changed during the time
interval under assessment e.g. MIPAS H2O measurements
before (Milz et al., 2009) and after 2004 (von Clarmann et al.,
2009), when the instrument was operated at different spectral
resolutions.

All these systematic differences between subsets of the
data causing data inhomogeneity can be described as error
correlations, which, if neglected, will not only render the sig-
nificance analysis of the trend insignificant, but can actually
change the slope of the regression line, i.e. lead to different
trends.

In Sect. 2 of this paper we present a closed-form solu-
tion to infer a linear regression line from correlated measure-
ments. In Sect. 3 we discuss the issue of seasonal or other
periodic corrections and propose formalisms to infer these
corrections directly from the measurements. Applicability of
each of the schemes proposed will be demonstrated on the
basis of selected case studies. While the proposed concept is

quite straightforward rather than novel, we hope that it may
be useful to the climate research community where currently
error covariances in irregularly sampled data often seem to be
ignored, even when inhomogeneous datasets are analyzed.

2 Linear trends of clustered data

Assuming a linear trend, we can approximate the temporal
development of an atmospheric state variabley as a straight
line. A straight line is defined as

ŷ (x;a,b) = a + bx, (3)

where thê symbol indicates a modeled or estimated rather
than a measured state variable. In our applicationx is the
time of the measurement, but this concept of regression of
clustered data is applicable to a wider context.

For normally distributed, but possibly interdependent er-
rors of yn, n=1... N , N≥2, of which the ex ante1 esti-
mates are represented by theN×N covariance matrixSy ,
this straight line is the optimal regression line for which the
cost function

χ2
= (y − (ae + bx))T Sy

−1(y − (ae + bx)) (4)

is minimum, wheree=(1,...,1)T and x=(x1,...,xN )T ,
y=(y1,...,yN )T , and T denotes the transpose of a matrix.
Coefficientsa andb are inferred in a well established man-
ner by setting the derivatives∂χ2/∂a and ∂χ /∂b to zero.
This gives

∂χ2

∂a
= − 2eT S−1

y (y − ae − bx) = 0; (5)

eT S−1
y y = eT S−1

y ae + eT S−1
y bx;

a =
eT S−1

y y − eT S−1
y bx

eT S−1
y e

and

∂χ2

∂b
= − 2xT S−1

y (y − ae − bx) = 0; (6)

xT S−1
y y − xT S−1

y ae − xT S−1
y bx = 0;

xT S−1
y y = xT S−1

y bx + xT S−1
y ae.

Combining Eqs.5 and6 gives

xT S−1
y y = xT S−1

y bx + xT S−1
y ae (7)

= xT S−1
y bx + xT S−1

y e
eT S−1

y y − eT S−1
y bx

eT S−1
y e

.

1Ex ante error estimates we call error estimates based on prop-
agation of assumed primary errors through the system, which can
be calculated before the measurement actually has been made, as
opposed to ex post error estimates which are based on the standard
deviation of a sample of measurements (von Clarmann, 2006).
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This can be rearranged as

xT Sy
−1bx −

xT S−1
y eeT S−1

y bx

eT S−1
y e

= (8)

xT Sy
−1y −

xT S−1
y eeT S−1

y y

eT S−1
y e

and finally solved to giveb:

b =

xT S−1
y y −

xT S−1
y eeT S−1

y y

eT S−1
y e

xT S−1
y x −

xT S−1
y eeT S−1

y x

eT S−1
y e

(9)

=
xT S−1

y yeT S−1
y e − xT S−1

y eeT S−1
y y

xT S−1
y xeT S−1

y e − xT S−1
y eeT S−1

y x
.

Inserting this into Eq.5 allows to calculatea:

a =
xT S−1

y y − eT S−1
y xb

eT S−1
y e

(10)

=

eT S−1
y y − eT S−1

y x
xT S−1

y yeT S−1
y e − xT S−1

y eeT S−1
y y

xT S−1
y xeT S−1

y e − xT S−1
y eeT S−1

y x

eT S−1
y e

=
eT S−1

y yxT S−1
y x − eT S−1

y xxT S−1
y y

eT S−1
y exT S−1

y x − eT S−1
y xxT S−1

y e
.

For unitySy this reduces to the widely used parametersã and
b̃ of a regression line for data points of uncorrelated errors of
equal variance:

ã =

∑
yn

N
− b̃

∑
xn

N
, (11)

where

b̃ =
N
∑

xnyn −
∑

xn

∑
yn

N
∑

x2
n − (

∑
xn)2

(12)

The uncertainty of the slopeb is:

σ 2
b =

(
∂b

∂y

)
Sy

(
∂b

∂y

)T

(13)

=

(
eT S−1

y exT S−1
y − xT S−1

y eeT S−1
y

xT S−1
y xeT S−1

y e−xT S−1
y eeT S−1

y x

)
·

Sy

(
eT S−1

y exT S−1
y − xT S−1

y eeT S−1
y

xT S−1
y xeT S−1

y e − xT S−1
y eeT S−1

y x

)T

,

where
(

∂b
∂y

)
=

(
∂b
∂y1

... ∂b
∂yN

)
. The uncertainty of axis intercept

a is estimated accordingly:

σ 2
a =

(
∂a

∂y

)
Sy

(
∂a

∂y

)T

(14)

=

(
xT S−1

y xeT S−1
y − eT S−1

y xxT S−1
y

eT S−1
y exT S−1

y x − eT S−1
y xxT S−1

y e

)
·

Sy

(
xT S−1

y xeT S−1
y − eT S−1

y xxT S−1
y

eT S−1
y exT S−1

y x − eT S−1
y xxT S−1

y e

)T

From comparison of Eqs. (9) and (12) we see that the error
correlations do not only change the estimated error of the
trend but also affect the trend itself, e.g. rotate the regression
line.

Evaluation of Eq. (9) requires knowledge of the covari-
ance matrixSy . For some error sources such error assump-
tions are available and reasonable assumptions on correla-
tions within a class of measurements can be made; if, e.g.,
different subsets of the data are based on different calibra-
tion standards, perfect correlation, i.e.,r=1, is appropriate
for the calibration error component within each such subset.
The bias between the subsets has to be estimated, and a fully
correlated block of which each element is the square of the
estimated bias between then-th and the first data subset has
to be added to that part of the covariance matrix which repre-
sents then-th data subset. The following equation shows the
construction of a covariance matrix for a dataset composed
of two data subsets biased against each other by an unknown
offset whose absolute value is estimated at bias2,1:

Sy = Snoise+



bias22,1 ... bias2
2,1

...
. . .

...

bias22,1 ... bias2
2,1


0 ... 0

...
. . .

...

0 ... 0


0 ... 0

...
. . .

...

0 ... 0


0 ... 0

...
. . .

...

0 ... 0




, (15)

where Snoise is the measurement noise covariance matrix.
For evaluation of error covariances representing other error
sources, external data may be needed. Typical error correla-
tions in a time series can be caused by the fact that the sam-
ple is composed of measurements at various locations. If the
mean measurement times at two locations differ, any differ-
ence in the expectation value of the state variable with, e.g.,
latitude, will map onto the trend. If the latitudinal depen-
dence is too complicated for a simple correction, or if there
is a non-negligible residual location-related error even after
correction, the related error correlation should be included in
the covariance matrixSy . Covariances between sitesi andk

can be estimated fromN global satellite data sets as

ri,kσiσk =

N∑
n=1

(xi,n − x̄i)(xk,n − x̄k)

N − 1
, (16)

whereri,k is the correlation coefficient between sitesi andk.
Three caveats have to be noted in this context:

(a) the N global data sets should be measured in a time
window short enough to justify neglect of any trend;

(b) when Eq. (16) is used to derive the variance (i.e.i=k)
characterizing the representativeness of sitei, the vari-
ance representing the satellite data measurement error
must be subtracted; if the measurement errors of the
satellite data are intercorrelated, the respective covari-
ance matrix has to be subtracted from the covariance
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Table 1. Case Study 1.

Case 1T (1) σ
2(2)
1T

r(3) a b

(K) (K2) (K) (K/yr)

1.1 0.0 0.31 1 217.77±0.80 0.05±0.10
1.2 0.0 0.0 0 217.84±0.57 0.04±0.08
1.3 0.0 0.31 0 217.88±0.66 0.03±0.08
1.4 −2.0 4.0 1 216.72±1.91 0.18±0.27
1.5 −2.0 0.0 0 215.00±0.57 0.41±0.08
1.6 −2.0 4.0 0 216.24±0.87 0.25±0.11

(1) 1T : artificial bias added to first three measurements;
(2) σ2

1T
: additional variance in the related block ofSy to account

for bias;
(3) r: correlation coefficient applied to related block ofSy to ac-
count for bias.

matrix derived according to Eq. (16) to obtain the inter-
site covariance matrix;

(c) the finite spatial resolution of satellite measurements
might be an issue.

In any case, the covariance matrix describing the uncertainty
due to the hidden variable is added to the – often diagonal
– covariance matrix characterizing the measurement noise of
the given sample. In a more general context where various
error sources independent of each other are considered, the
covariance matrix representing the total uncertainty of the
dataset is calculated as the sum of the respective covariance
matrices.

Case Study 1:

The trend estimator of Eq.9 is applied to tropical (30◦S to
30◦N) annual temperature averages at 25 km altitude inferred
from limb infrared measurements recorded with the MIPAS
instrument (Fischer et al., 2008). Temperature retrievals for
the years 2002 to 2004 are based on measurements when
MIPAS was operated at full spectral resolution (von Clar-
mann et al., 2003), while measurements from 2005 to 2009
are based on reduced spectral resolution measurements (von
Clarmann et al., 2009). This different operation mode poten-
tially causes an unknown bias between the subsets of data,
which we estimate at±0.56 K and account for by adding0.56K

0.56K
0.56K

(0.56K;0.56K;0.56K) = (17)

0.31K2
;0.31K2

;0.31K2

0.31K2
;0.31K2

;0.31K2

0.31K2
;0.31K2

;0.31K2


to the block ofSy which refers to the years 2002 to 2004. The
other error component is the estimated standard error of the

Fig. 1. Linear trends from MIPAS annual mean temperatures at
25 km altitude, 30◦S–30◦N . Cases 1.1–1.3 are based on measure-
ment data as they are, while an artificial bias of−2 K has been ap-
plied to temperatures of the years 2002–2004 in cases 1.4–1.6. In
cases 1.1 and 1.4 covariances were treated correctly; in cases 1.2
and 1.5 the bias was neglected and in cases 1.3 and 1.6 only the
variances of the bias were considered while its covariances were
neglected. After 2004, data used for case studies 1.1–1.3 are identi-
cal to those used for case studies 1.4–1.6. Solid error bars are total
errors while dotted error bars are random errors only.

annual mean, which is variable due to the different sample
size for each year. Thex-coordinate of our data set is the
time since 2000, i.e. the intercept refers to the year 2000.

We calculate the regression parameters using the full co-
variance matrix (case 1.1) as described above, for a simpli-
fied case where the bias is ignored (case 1.2), and for a test
case where only the variances of the bias are considered but
not the covariances (case 1.3). Results are shown in Fig.1
and compiled in Table 1.

Results seem to be quite robust with respect to the change
of the MIPAS operation mode, i.e. the actual bias between
the data subsets might be smaller than anticipated. Thus
the correct statistical treatment of the bias is not critical. In
none of the case studies there is a significant trend detected
(we call a trend significant if it exceeds twice its uncertainty;
for Gaussian errors this corresponds roughly to 5% level of
significance). In order to assess the robustness of the trend
analysis scheme to data with large, correlated error compo-
nents, we repeat the case studies mentioned above, but in-
troduce an artificial bias of−2 K to the data subset covering
the years 2002 to 2004 and modify the covariance matrix ac-
cordingly (case 1.4). Larger data errors propagate to larger
estimated errors in the regression parameters, but the scheme
is robust in a sense that still no significant trend is produced.
In case study 1.5 the same manipulated data are used, but
the artificial error is neglected in the covariance matrix. The
bias maps onto the regression parameters and causes an ar-
tificial, apparently significant trend. In case study 1.6, the
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data uncertainty is considered as an uncorrelated error, i.e.,
the additional variances are considered but covariances are
set to zero. The artificial trend still appears to be significant.
This proves the importance of correct consideration of co-
variances. This example has been chosen for demonstration
purposes. We neither claim that all possible error correla-
tions in the MIPAS data have been perfectly quantified, nor
should the inferred trends be used for extrapolation towards
longer term analysis.

3 Consideration of the annual cycle and related
problems

A linear trend may be superimposed with a periodic function
of known periodic time, e.g. diurnal or seasonal variation,
etc. There are several options to tackle this problem.

If the sample is large enough, the linear trend can be eval-
uated for subsets of data recorded at the same phase of the
periodical variation, and the overall trend is calculated as an
optimal (i.e. weighted inversely by the variances) mean of the
individual trends. This requires binning of data; in the case
of a seasonal cycle, the linear trend can be estimated as the
mean of the trend over all Januaries, Februaries, etc. Prob-
lems occur when the amplitude of the seasonal cycle has a
trend in itself and the whole observation time interval is not
an integer multiple of the time of one cycle.

Another option is subtraction of the periodic signal prior to
trend estimation. The periodic component of the signal can
either be imported from an external source (model, indepen-
dent data) or from the sample itself. The latter approach is
not quite trivial, because the inferred mean periodical signal
will, in turn, depend on the trend (periodic analysis usually is
defined only for stationary time series, i.e. zero trend), such
that either an iterative approach or a multivariate optimiza-
tion (see below) is required. Care has to be taken to consider
the reduction of degrees of freedom implied by inferring the
correction from the data themselves. In the following, we
will discuss how the periodic correction can be estimated si-
multaneously with the trend.

3.1 Correction by sine and cosine functions

The problem of the non-stationary nature of time series,
which is by definition inherent in trend analysis, can be
solved by retrieving the trend, the amplitude of the periodic
variation, and possibly the phase and the shape of the oscilla-
tion in one step. In the case of a known function of unknown
amplitude (e.g. sine), the amplitude can be fitted along with
the trend. In the case of unknown phase, it is usually more
appropriate to fit amplitudes of a sine and a cosine of the
same period length rather than the amplitude and the phase,
in order to keep the fit linear. A regression model involving

a linear trend superimposed with a single harmonic variation
of unknown phase but known period lengthl is written as

ŷ(x;a,b,c,d) = a + bx + csin
2πx

l
+ dcos

2πx

l
. (18)

Setting the partial derivatives of

χ2
= (y(x) − ŷ(x))T S−1

y (y(x) − ŷ(x)) (19)

with respect to the parameters of the regression model to zero
gives

∂χ2

∂a
=−2eT S−1

y (y(x)−ae−bx−cvsin−dvcos) = 0 (20)

∂χ2

∂b
= (21)

− 2xT S−1
y (y(x) − ae − bx − cvsin − dvcos) = 0

∂χ2

∂c
= (22)

− 2vT
sinS

−1
y (y(x) − ae − bx − cvsin − dvcos) = 0

∂χ2

∂d
= (23)

− 2vT
cosS

−1
y (y(x) − ae − bx − cvsin − dvcos)=0,

wherevsin=(sin2πx1
l

,...,sin2πxN

l
)T , and

vcos=(cos2πx1
l

,...,cos2πxN

l
)T . Equations (20–23) form a

system of four equations linear ina, b, c andd, of the type

T


a

b

c

d

 = q (24)

where

T1,1 = 2eT S−1
y e (25)

T1,2 = 2eT S−1
y x

...

T4,4 = 2vT
cosS

−1
y vcos

q1 = 2eT S−1
y y(x)

...

q4 = 2vT
cosS

−1
y y(x).

For N≥4 and non-singularity ofT, Eq. (24) can be unam-
biguously solved for the four parametersa...d. This can be
done by any linear equation program package at hand. The
advantage of this approach is that it does not require a sta-
tionary time series to evaluate the amplitudes of the oscilla-
tions. If need be, this type of analysis can also involve mul-
tiple periodic functions of different periods, which may be

www.atmos-chem-phys.net/10/6737/2010/ Atmos. Chem. Phys., 10, 6737–6747, 2010



6742 T. von Clarmann et al.: Trend estimation from clustered data

made subject to lowpass filtering. This generalization of the
schemes presented here to applications with more than one
pair of periodic functions is straightforward, and the relation-
ship to harmonic analysis is obvious if the period lengths are
chosen to be integer fractions of the longest one. Problems
with singularity ofT will occur if the number of data points
is smaller than the number of period lengths plus 2.

The covariance matrixSa,b,c,d of the regression parame-
ters is

Sa,b,c,d =


∂a
∂y
∂b
∂y
∂c
∂y
∂d
∂y

Sy


∂a
∂y
∂b
∂y
∂c
∂y
∂d
∂y


T

(26)

=

(
T−1

(
∂q

∂y

))
Sy

(
T−1

(
∂q

∂y

))T

=

T−1


2eT S−1

y

2xT S−1
y

2vT
sinS

−1
y

2vT
cosS

−1
y


Sy

×

T−1


2eT S−1

y

2xT S−1
y

2vT
sinS

−1
y

2vT
cosS

−1
y




T

.

The off-diagonal elements ofSy will determine whether the
data errors map either predominantly onto the slope or onto
the axis intercept of the regression curve. For example, large
positive correlations throughout the data lead to large inter-
cept errors while the slope remains quite well determined
with sometimes surprisingly small uncertainties. The ex-
treme case would be fully correlated data errors. It is well
known that such a constant bias in the data does not affect
the trend at all. Consideration of full covariance matrices al-
lows the correct treatment of realistic cases, where the errors
are neither purely random nor purely systematic but may in-
clude correlations within subsets of the data.

The uncertainties estimated by Eq. (26) include the prop-
agation of data errors onto the regression parameters but not
uncertainties caused by the use of an inappropriate model
(e.g. neglect of higher order or periodic components).

3.1.1 Case Study 2:

The trend estimator of Eqs. (18–25) is applied to tropical
(30◦S to 30◦ N) “pseudomonthly” MIPAS temperature av-
erages at 25 km. A “pseudomonth” we call a time period of
32 days, chosen to be an integer division of the mean pe-
riod of the semi-annual oscillation (SAO) which was first de-
tected byReed(1965). The period of the SAO in the MIPAS
data set is estimated at 192 days, which is in good agree-
ment with SAO period length of about 194 days at 30 km as
reported byGuharay et al.(2009). We extend the method

Table 2. Case Study 2.

Case 1T (1) σ
2(2)
1T

r(3) a b

(K) (K2) (K) (K/yr)

2.1 0.0 0.31 1 219.24±0.25 -0.09±0.03
2.2 0.0 0.0 0 219.14±0.10 -0.08±0.02
2.3 0.0 0.31 0 218.75±0.28 -0.04±0.04
2.4 −2.0 4.0 1 219.24±0.26 -0.09±0.03
2.5 −2.0 0.0 0 215.83±0.10 0.35±0.02
2.6 −2.0 4.0 0 215.70±0.91 0.34±0.14

(1) 1T : artificial bias added to first three measurements;
(2) σ2

1T
: additional variance in the related block ofSy to account

for bias;
(3) r: correlation coefficient applied to related block ofSy to ac-
count for bias.

described in the theory part towards two sine and two co-
sine terms as to include also the quasi-biennial oscillation
(c.f. Baldwin et al.2001). Its period length is assumed to
be 25 months, in agreement with data provided by Freie
Universiẗat Berlin (http://www.geo.fu-berlin.de/met/ag/strat/
produkte/qbo/index.html). The case studies for this applica-
tion, particularly the treatment of biases, were selected as in
case study 1.

Correct treatment of the original MIPAS data and their cor-
relations (case study 2.1) results in a negative trend, neglect
of correlations (case study 2.2) and their simplified treatment
(case study 2.3) lead to small negative temperature trends
(Table 2 and Fig.2). The trend obtained from case study 2.3
is insignificant. More interesting is the assessment of the data
superimposed with an artificial bias: If the bias is considered
correctly in the covariance matrix (case study 2.4), it does not
change the trend by any substantial amount, while otherwise
(case studies 2.5 and 2.6) there is an apparent positive trend,
which appears significant. This demonstrates how powerful
the concept of bias consideration in the error covariance ma-
trix is to remedy data inhomogeneities.

3.2 Correction by a discrete empirical function

If the shape of the periodic variation is not known a pri-
ori, it can be inferred from the data themselves in one step
with the trend estimation. For data binned in the time do-
main (e.g. when monthly means are used to infer a trend with
superimposed seasonal variation) corrections for each phase
(e.g. monthly corrections) are fitted along with slope and axis
intercept. The regression model then is

ŷ = a + bx + cj (x), (27)

wherecj (x) is the (e.g., monthly) correction applicable to the
measurement made at timex. The cost function to be mini-
mized for this application is
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Fig. 2. Linear trends from MIPAS 32-day mean temperatures at
25 km altitude, 30◦S–30◦ N, with consideration of sine and cosine
corrections for the quasi-biennial oscillation and the semi-annual
oscillation. Test cases represent different treatment of the bias, for
details see Fig.1. The linear term of the regression function is
shown for all cases 2.1–2.6, while, for reasons of clarity, the full
regression curve is shown for case 2.1 only. Representative error
bars include both the random error and – if considered in the re-
spective case – the bias.

χ2
= (28)

(y(x)−(ae + bx+Uc))T S−1
y (y(x)−(ae+bx+Uc))

wherec is a vector of lengthJ , whereJ is the number of
phase bins (J=12 in the case of monthly corrections in an
annual cycle) representing the applicable corrections for each
phase bin, andU is a selection matrix with all elements in the
n-th row zero except for columnj , wherej represents the
month when measurementxn was made, where the matrix
element is one.N≥J+2 is required, and for each phase bin
at least one measurement must be available. Minimization of
χ2 to get the regression parameters follows the same strategy
as described in Sect. 3, i.e. the derivatives ofχ2 with respect
to the regression parametersa, b andc are set zero and the
resulting system of linear equations is solved. However, the
derivative with respect to the axis intercept and that with re-
spect to the additive corrections lead to linearly dependent
equations. Thus, the equation

∂χ2

∂a
= 0 (29)

is dropped for reasons of redundancy, and

J∑
j=1

cj = 0 (30)

is included to constrain the solution to zero mean periodic
corrections.

Fig. 3. Linear trends from MIPAS 32-day mean temperatures at
25 km altitude, 30◦S–30◦N, using the discrete empirical periodical
correction, as described in Sect.3.2. Both the linear part of the
regression function and the complete regression function are shown.
No artificial bias has been added to the data in this case study.

Case Study 3:

Here we use the same binned MIPAS temperature data as for
case studies 2.1–2.3. A periodicity of 25 bins is assumed to
match the quasi-biennial oscillation. The trend is estimated
at 0.06±0.01 K/yr (Fig.3). The estimated uncertainty is the
propagation of the measurement error on the trend and in-
cludes the random error and the bias only; no other error
sources are considered; particularly temperatures might not
be perfectly described by the regression model chosen, and
the time series of limited length might not be representa-
tive for a longer term. As a side aspect, differences in the
trends compared to those inferred in case study 2 (Fig.2,
c.f. case 2.1) demonstrate the importance of the choice of the
regression model.

3.3 Correction by a continuous empirical function

If binning or averaging in the time domain is to be avoided,
the discrete application of the correction can be replaced by
a continuous time-dependence. This might be advisable if
data are available on a time-grid finer than the bin-width, and
if the variation ofy within a bin is large. The actual correc-
tion for a giveny(x) can then be estimated by, e.g., linear,
interpolation, leading to the regression model

ŷ = a + bx + cj (x)wn,j (x) + cj (x)+1wn,j (x)+1 (31)

wherec are periodic corrections at predefined phases andv

their weights. More specifically,cj (x) andcj (x)+1 are the pe-
riodic corrections referring to the closest times before/after
the measurement timex (e.g. for each 1st of the month when
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the measurement was made, and the 1st of the following
month, respectively). The weighting factorsw are

wn,j (x) =
dj (x) − d(xn)

dj (x)
(32)

and

wn,j (x)+1 =
d(xn)

dj (x)

, (33)

wheredj (x) is the difference between the times related to
cj (x) andcj (x)+1 (e.g. the number of days of the month) and
d(x) is difference between the actual measurement time and
the time related tocj (x) (e.g. the day of the month). Periodic-
ity is assumed in a sense thatcj (x)=cj (x+

∑
dj ). The number

of parameters to be fitted still isJ+2, as with the approach
involving binning in the time domain. The cost function to
be minimized for this application has the same structure as
Eq. (28):

χ2
= (34)

(y(x)−(ae+bx+Wc))T S−1
y (y(x)−(ae + bx+Wc))

W is a matrix with all elements in then-th row zero except
for columnj andj+1 (or 1, if j denotes the last column),
wherej and j+1 represent the month when measurement
n was made, and the subsequent month, respectively. The
respective matrix elements are the weights of the monthly
correction factorscj andcj+1, as defined by Eqs. (32–33).
The minimization of the cost functions of Eqs. (28) and (34)
and error estimation follows the same scheme as outlined for
the cost function in Eq. (19), except that the zero mean con-
straint forc1...cj has to substitute the equation involving the
partial derivative ofχ2 with respect toa, as in Sect. 4.2.

Case Study 4:

In this case study we use MIPAS tropical (30◦ S to 30◦ N)
daily mean temperatures at 25 km altitude. As in case
study 3, 27 independent periodic correction terms are jointly
inferred from the data along with axis intercept and linear
trend; contrary to case study 3, the actual correction appli-
cable to a data point is determined by linear interpolation
between the two correction terms representing the nominal
times before and after the actual measurement time. The in-
ferred trend is 0.06±0.01 K/yr (Fig.4), as in case study 3. As
in the preceding case studies, random errors and the bias due
to the change in the MIPAS measurement mode are the only
errors considered.

3.4 Correction by functions of state-dependent
amplitude

Often the amplitude of the periodic variation depends lin-
early on the actual mean statea+bx:

Fig. 4. Linear trends from MIPAS daily mean temperatures at
25 km altitude, 30◦S–30◦ N, using the continuous empirical peri-
odical correction, as described in Sect.3.3. Both the linear part
of the regression function (solid line) and the complete regression
function (dash dot) are shown.

ŷ(x;a,b,c,d) = a + bx (35)

+ (a + bx)csin
2πx

l
+

(a + bx)dcos
2πx

l
= a + bx

+ acsin
2πx

l
+ bxcsin

2πx

l
+

adcos
2πx

l
+ bxdcos

2πx

l

This is typically the case with concentrations of atmospheric
constituents: When the average abundance is larger, also the
diurnal or annual cycle is expected to have a larger amplitude.
Minimization of the related cost function leads to a nonlinear
system of equations, becausex appears both in the argument
of the trigonometric function and in its multiplier. Since for
such problems there exists no straight-forward closed-form
solution, this system of nonlinear equations is suggested to
be linearized and iteratively solved forai+1, bi+1, ci+1, and
di+1, wherei is the iteration index. The dependence of the
amplitudes of the periodic components on the actual state are
calculated from the results of the preceding iteration step:

0 = − 2eT S−1
y

(
y(x) − ai+1e − bi+1x − (36)

ci+1diag
(
(aie + bix)vT

sin

)
−

di+1diag
(
(aie + bix)vT

cos

))
;
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0 = −2xT S−1
y

(
y(x) − ai+1e − bi+1x − (37)

ci+1diag
(
(aie + bix)vT

sin

)
−

di+1diag
(
(aie + bix)vT

cos

))
;

0 = − 2
(
diag

(
(aie + bix)vT

sin

))T

S−1
y × (38)(

y(x) − ai+1e − bi+1x −

ci+1diag
(
(aie + bix)vT

sin

)
−

di+1diag
(
(aie + bix)vT

cos

))
;

0 = − 2
(
diag

(
(aie + bix)vT

cos

))T

S−1
y × (39)(

y(x) − ai+1e − bi+1x −

ci+1diag
(
(aie + bix)vT

sin

)
−

di+1diag
(
(aie + bix)vT

cos

))
,

Again the equation involving∂χ2/∂a=0 is replaced by
c1+...+cJ =0. The iteration can be initialized with

a0 =

N∑
n=1

yn

N
(40)

and

b0 = 0 (41)

and is supposed to converge for cases where the trend is suffi-
ciently small and/or the amplitude of the superimposed peri-
odic function is sufficiently small compared to theyn values.
In both cases, the time-dependence of the amplitude is only
a small perturbation of a function dominated by its linear
terms. Similar considerations apply to periodic corrections
as suggested in Eqs. (27) and (31).

Case Study 5:

The approach involving state-dependent amplitudes of peri-
odic corrections is applicable particularly to trace gas abun-
dances rather than temperature. We use MIPAS southern
polar (60◦–90◦ S) monthly CFC-11 mean mixing ratios at
20 km altitude. Its negative trend is a consequence of the

Fig. 5. Linear trends from MIPAS monthly mean CFC-11 at 20 km
altitude, 60◦S–90◦ S, using periodical correction of state-dependent
amplitude, as described in Sect.3.4. The fit converges after the third
iteration.

Montreal Protocol, and the annual variation is driven by at-
mospheric circulation and, particularly, subsidence of CFC-
depleted air in the polar winter stratosphere. Since the effi-
ciency of loss reactions leading to CFC-depletion is propro-
tional to its abundance, application of a correction function
of an abundance-dependent amplitude is appropriate. Also
in this case the change in the MIPAS measurement mode in
2004 makes the dataset inhomogeneous. In the related co-
variance matrix we consider an unknown bias between the
data subsets of±2 ppt. Due to the moderate trend the itera-
tion converges rapidly. The regression function after the first
iteration is

[CFC− 11]/ppt= (42)

42.62− 1.08t +

(42.62− 1.08t)(0.575sin(2πt) + 0.491cos(2πt)),

wheret is the time since 2000 in years. After the third itera-
tion the final regression function is reached (Fig.5):

[CFC− 11]/ppt= (43)

43.04− 1.15t +

(43.04− 1.15t)(0.599sin(2πt) + 0.522cos(2πt))

The uncertainty of the trend is±0.38 ppt/yr.

4 Conclusions

In case of irregular temporal and spatial sampling and/or
multiple measurement systems, intersite and/or intersystem
error correlations have to be considered for trend estima-
tion. To disregard the correlations not only renders the sig-
nificance analysis meaningless, but leads to wrong estimates
of the trend itself. Intersite correlations as well as correla-
tion lengths in the time domain can be estimated from satel-
lite data, where, however, the limited spatial resolution of
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remote measurements can add some difficulty. The regres-
sion model can easily be adapted for periodic corrections of
known period length but unknown phase, shape and ampli-
tude. This scheme solves the problem that usual approaches
to infer periodic corrections rely on the time series being sta-
tionary, which is inherently not true in the case of trend es-
timation. State-dependent amplitudes of superimposed peri-
odic corrections can be appropriate when trends of trace gas
abundances are evaluated and result in a non-linear optimiza-
tion problem which is solved iteratively.
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López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G.,
Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an
instrument for atmospheric and climate research, Atmos. Chem.
Phys., 8, 2151–2188, doi:10.5194/acp-8-2151-2008, 2008.

Gardiner, T., Forbes, A., de Mazière, M., Vigouroux, C., Mahieu,
E., Demoulin, P., Velazco, V., Notholt, J., Blumenstock, T., Hase,
F., Kramer, I., Sussmann, R., Stremme, W., Mellqvist, J., Strand-
berg, A., Ellingsen, K., and Gauss, M.: Trend analysis of green-
house gases over Europe measured by a network of ground-based
remote FTIR instruments, Atmos. Chem. Phys., 8, 6719–6727,
doi:10.5194/acp-8-6719-2008, 2008.

Guharay, A., Nath, D., Pant, P., Pande, B., Russell III, J. M.,
and Pandey, K.: Observation of semiannual and annual oscil-
lation in equatorial middle atmospheric long term temperature
pattern, Ann. Geophys., 27, 4273–4280, doi:10.5194/angeo-27-
4273-2009, 2009.

IPCC: Climate Change 2007: The Physical Science Basis, Con-
tribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Av-
eryt, K. B., Tignor M., and Miller, H. L., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 996 pp., 2007.

Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating sampling
errors in large-scale temperature averages, J. Climate, 10, 2548–
2568, 1997.

Milz, M., von Clarmann, T., Fischer, H., Glatthor, N., Grabowski,
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