530 research outputs found

    A New Kind of Finance

    Full text link
    Finance has benefited from the Wolfram's NKS approach but it can and will benefit even more in the future, and the gains from the influence may actually be concentrated among practitioners who unintentionally employ those principles as a group.Comment: 13 pages; Forthcoming in "Irreducibility and Computational Equivalence: 10 Years After Wolfram's A New Kind of Science," Hector Zenil, ed., Springer Verlag, 201

    “An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other

    Get PDF
    We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results

    Agent cognition through micro-simulations: Adaptive and tunable intelligence with NetLogo LevelSpace

    Full text link
    We present a method of endowing agents in an agent-based model (ABM) with sophisticated cognitive capabilities and a naturally tunable level of intelligence. Often, ABMs use random behavior or greedy algorithms for maximizing objectives (such as a predator always chasing after the closest prey). However, random behavior is too simplistic in many circumstances and greedy algorithms, as well as classic AI planning techniques, can be brittle in the context of the unpredictable and emergent situations in which agents may find themselves. Our method, called agent-centric Monte Carlo cognition (ACMCC), centers around using a separate agent-based model to represent the agents' cognition. This model is then used by the agents in the primary model to predict the outcomes of their actions, and thus guide their behavior. To that end, we have implemented our method in the NetLogo agent-based modeling platform, using the recently released LevelSpace extension, which we developed to allow NetLogo models to interact with other NetLogo models. As an illustrative example, we extend the Wolf Sheep Predation model (included with NetLogo) by using ACMCC to guide animal behavior, and analyze the impact on agent performance and model dynamics. We find that ACMCC provides a reliable and understandable method of controlling agent intelligence, and has a large impact on agent performance and model dynamics even at low settings.Comment: Model source code available here: https://github.com/qiemem/Wolf-Sheep-Predation-Micro-Sims, In: Unifying Themes in Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity. Springer, Cha

    Probabilistic Inductive Classes of Graphs

    Full text link
    Models of complex networks are generally defined as graph stochastic processes in which edges and vertices are added or deleted over time to simulate the evolution of networks. Here, we define a unifying framework - probabilistic inductive classes of graphs - for formalizing and studying evolution of complex networks. Our definition of probabilistic inductive class of graphs (PICG) extends the standard notion of inductive class of graphs (ICG) by imposing a probability space. A PICG is given by: (1) class B of initial graphs, the basis of PICG, (2) class R of generating rules, each with distinguished left element to which the rule is applied to obtain the right element, (3) probability distribution specifying how the initial graph is chosen from class B, (4) probability distribution specifying how the rules from class R are applied, and, finally, (5) probability distribution specifying how the left elements for every rule in class R are chosen. We point out that many of the existing models of growing networks can be cast as PICGs. We present how the well known model of growing networks - the preferential attachment model - can be studied as PICG. As an illustration we present results regarding the size, order, and degree sequence for PICG models of connected and 2-connected graphs.Comment: 15 pages, 6 figure

    Using Simulations as a Starting Point for Constructing Meaningful Learning Games

    Get PDF
    For many school administrators and decision makers, the term “video games” holds numerous cultural associations which make their adoption in the education space challenging. Additionally, the term is so broad that it can sometimes be difficult to communicate explicitly a desire to build learning experiences that go beyond the Drill and Kill edutainment titles that currently dominate most people’s perceptions of educational games. By contrast, the term “simulations” is often well respected among educators, particularly in the natural sciences. With “simulation” already being a full genre of video games, it would seem natural that researchers are beginning to explore the overlaps between simulation games and pedagogical goals that go beyond those found in Drill and Kill games. In this chapter, we survey some of the relevant research concerning both simulations and video games and outline practical pathways through which we can leverage the interest and frameworks designed for simulation construction to facilitate the introduction of video game concepts and experiences into the classroom environment. In particular, we report on the use of Starlogo TNG, a graphical programming environment in which kids themselves can create simulation-based video games, for deepening children’s understanding of scientific concepts

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Using argument notation to engineer biological simulations with increased confidence

    Get PDF
    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions

    Overestimating Resource Value and Its Effects on Fighting Decisions

    Get PDF
    Much work in behavioral ecology has shown that animals fight over resources such as food, and that they make strategic decisions about when to engage in such fights. Here, we examine the evolution of one, heretofore unexamined, component of that strategic decision about whether to fight for a resource. We present the results of a computer simulation that examined the evolution of over- or underestimating the value of a resource (food) as a function of an individual's current hunger level. In our model, animals fought for food when they perceived their current food level to be below the mean for the environment. We considered seven strategies for estimating food value: 1) always underestimate food value, 2) always overestimate food value, 3) never over- or underestimate food value, 4) overestimate food value when hungry, 5) underestimate food value when hungry, 6) overestimate food value when relatively satiated, and 7) underestimate food value when relatively satiated. We first competed all seven strategies against each other when they began at approximately equal frequencies. In such a competition, two strategies–“always overestimate food value,” and “overestimate food value when hungry”–were very successful. We next competed each of these strategies against the default strategy of “never over- or underestimate,” when the default strategy was set at 99% of the population. Again, the strategies of “always overestimate food value” and “overestimate food value when hungry” fared well. Our results suggest that overestimating food value when deciding whether to fight should be favored by natural selection

    Change and Aging Senescence as an adaptation

    Get PDF
    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will between parents and their progeny; iii) optimal conditions are not stationary, mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by random chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces always win over group selection ones, it is not exactly the individual that is selected, but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
    • …
    corecore