1,870 research outputs found

    Evaporation of buffer gas-thermalized anions out of a multipole rf ion trap

    Full text link
    We identify plain evaporation of ions as the fundamental loss mechanism out of a multipole ion trap. Using thermalized negative Cl- ions we find that the evaporative loss rate is proportional to a Boltzmann factor. This thermodynamic description sheds new light on the dynamics of particles in time-varying confining potentials. It specifically allows us to extract the effective depth of the ion trap as the activation energy for evaporation. As a function of the rf amplitude we find two distinct regimes related to the stability of motion of the trapped ions. For low amplitudes the entire trap allows for stable motion and the trap depth increases with the rf field. For larger rf amplitudes, however, rapid energy transfer from the field to the ion motion can occur at large trap radii, which leads to a reduction of the effective trapping volume. In this regime the trap depth decreases again with increasing rf amplitude. We give an analytical parameterization of the trap depth for various multipole traps that allows predictions of the most favorable trapping conditions.Comment: Phys. Rev. Lett., in pres

    Saturation of Cs2 Photoassociation in an Optical Dipole Trap

    Full text link
    We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the rate coefficient on the photoassociation laser intensity, we observe saturation of the photoassociation scattering probability at the unitarity limit in quantitative agreement with the theoretical model by Bohn and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power broadening of the resonance width is measured. We could not observe an intensity dependent light shift in contrast to findings for lithium and rubidium, which is attributed to the absence of a p or d-wave shape resonance in cesium

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Formation of ultracold LiCs molecules

    Get PDF
    We present the first observation of ultracold LiCs molecules. The molecules are formed in a two-species magneto-optical trap and detected by two-photon ionization and time-of-flight mass spectrometry. The production rate coefficient is found to be in the range 10^{-18}\unit{cm^3s^{-1}} to 10^{-16}\unit{cm^3s^{-1}}, at least an order of magnitude smaller than for other heteronuclear diatomic molecules directly formed in a magneto-optical trap.Comment: 8 pages, 2 figure

    Computed Rotational Collision Rate Coefficients for Recently Detected Anionic Cyanopolyynes

    Full text link
    We report new results from quantum calculations of energy-transfer processes taking place in interstellar environments and involving two newly observed molecular species: C5_5N^- and C7_7N^- in collision with He atoms and the p-H2_2 molecules. These species are part of the anionic molecular chains labeled as cyanopolyynes which have been observed over the years in molecule-rich Circumstellar Envelopes and in molecular clouds. In the present work, we first carry out new abab initioinitio calculations for the C7_7N^- interaction potential with He atom and then obtain state-to-state rotationally inelastic cross sections and rate coefficients involving the same transitions which have been observed experimentally by emission in the interstellar medium (ISM) from both of these linear species. For the C5_5N^-/He system we extend the calculations already published in our earlier work (see reference below) to compare more directly the two molecular anions. We extend further the quantum calculations by also computing in this work collision rate coefficients for the hydrogen molecule interacting with C5N^-, using our previously computed interaction potential. Additionally, we obtain the same rate coefficients for the C7_7N^-/H2_2 system by using a scaling procedure that makes use of the new C7_7N^-/He rate coefficients, as discussed in detail in the present paper. Their significance in affecting internal state populations in ISM environments where the title anions have been found is analyzed by using the concept of critical density indicators. Finally, similarities and differences between such species and the comparative efficiency of their collision rate coefficients are discussed. These new calculations suggest that, at least for the case of these longer chains, the rotational populations could reach local thermal equilibrium conditions within their observational environments

    Universality of the Crossing Probability for the Potts Model for q=1,2,3,4

    Full text link
    The universality of the crossing probability πhs\pi_{hs} of a system to percolate only in the horizontal direction, was investigated numerically by using a cluster Monte-Carlo algorithm for the qq-state Potts model for q=2,3,4q=2,3,4 and for percolation q=1q=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was shown that probability of a system to percolate only in the horizontal direction πhs\pi_{hs} has universal form πhs=A(q)Q(z)\pi_{hs}=A(q) Q(z) for q=1,2,3,4q=1,2,3,4 as a function of the scaling variable z=[b(q)L1ν(q)(ppc(q,L))]ζ(q)z= [ b(q)L^{\frac{1}{\nu(q)}}(p-p_{c}(q,L)) ]^{\zeta(q)}. Here, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed, A(q)A(q) is the nonuniversal crossing amplitude, b(q)b(q) is the nonuniversal metric factor, ζ(q)\zeta(q) is the nonuniversal scaling index, ν(q)\nu(q) is the correlation length index. The universal function Q(x)exp(z)Q(x) \simeq \exp(-z). Nonuniversal scaling factors were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed, journal-ref added

    EHA evaluation of the ESMO-Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS v1.1) for haematological malignancies

    Get PDF
    Objective Value frameworks in oncology have not been validated for the assessment of treatments in haematological malignancies, but to avoid overlaps and duplications it appears reasonable to build up experience on existing value frameworks, such as the European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (ESMO-MCBS). Methods Here we present the results of the first feasibility testing of the ESMO-MCBS v1.1 for haematological malignancies based on the grading of 80 contemporary studies for acute leukaemia, chronic leukaemia, lymphoma, myeloma and myelodysplastic syndromes. The aims were (1) to evaluate the scorability of data, (2) to evaluate the reasonableness of the generated grades for clinical benefit using the current version and (3) to identify shortcomings in the ESMO-MCBS v1.1 that require amendments to improve the efficacy and validity of the scale in grading new treatments in the management of haematological malignancies. Results In general, the ESMO-MCBS v1.1 was found to be widely applicable to studies in haematological malignancies, generating scores that were judged as reasonable by European Hematology Association (EHA) experts. A small number of studies could either not be graded or were not appropriately graded. The reasons, related to the differences between haematological and solid tumour malignancies, are identified and described. Conclusions Based on the findings of this study, ESMO and EHA are committed to develop a version of the ESMO-MCBS that is validated for haematological malignancies. This development process will incorporate all of the usual stringencies for accountability of reasonableness that have characterised the development of the ESMO-MCBS including field testing, statistical modelling, evaluation for reasonableness and openness to appeal and revision. Applying such a scale will support future public policy decision-making regarding the value of new treatments for haematological malignancies and will provide insights that could be helpful in the design of future clinical trials

    EHA evaluation of the ESMO—Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS v1.1) for haematological malignancies

    Get PDF
    Objective: Value frameworks in oncology have not been validated for the assessment of treatments in haematological malignancies, but to avoid overlaps and duplications it appears reasonable to build up experience on existing value frameworks, such as the European Society for Medical Oncology—Magnitude of Clinical Benefit Scale (ESMO-MCBS). Methods: Here we present the results of the first feasibility testing of the ESMO-MCBS v1.1 for haematological malignancies based on the grading of 80 contemporary studies for acute leukaemia, chronic leukaemia, lymphoma, myeloma and myelodysplastic syndromes. The aims were (1) to evaluate the scorability of data, (2) to evaluate the reasonableness of the generated grades for clinical benefit using the current version and (3) to identify shortcomings in the ESMO-MCBS v1.1 that require amendments to improve the efficacy and validity of the scale in grading new treatments in the management of haematological malignancies. Results: In general, the ESMO-MCBS v1.1 was found to be widely applicable to studies in haematological malignancies, generating scores that were judged as reasonable by European Hematology Association (EHA) experts. A small number of studies could either not be graded or were not appropriately graded. The reasons, related to the differences between haematological and solid tumour malignancies, are identified and described. Conclusions: Based on the findings of this study, ESMO and EHA are committed to develop a version of the ESMO-MCBS that is validated for haematological malignancies. This development process will incorporate all of the usual stringencies for accountability of reasonableness that have characterised the development of the ESMO-MCBS including field testing, statistical modelling, evaluation for reasonableness and openness to appeal and revision. Applying such a scale will support future public policy decision-making regarding the value of new treatments for haematological malignancies and will provide insights that could be helpful in the design of future clinical trials

    Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation

    Get PDF
    Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology
    corecore