Computed Rotational Collision Rate Coefficients for Recently Detected Anionic Cyanopolyynes

Abstract

We report new results from quantum calculations of energy-transfer processes taking place in interstellar environments and involving two newly observed molecular species: C5_5N^- and C7_7N^- in collision with He atoms and the p-H2_2 molecules. These species are part of the anionic molecular chains labeled as cyanopolyynes which have been observed over the years in molecule-rich Circumstellar Envelopes and in molecular clouds. In the present work, we first carry out new abab initioinitio calculations for the C7_7N^- interaction potential with He atom and then obtain state-to-state rotationally inelastic cross sections and rate coefficients involving the same transitions which have been observed experimentally by emission in the interstellar medium (ISM) from both of these linear species. For the C5_5N^-/He system we extend the calculations already published in our earlier work (see reference below) to compare more directly the two molecular anions. We extend further the quantum calculations by also computing in this work collision rate coefficients for the hydrogen molecule interacting with C5N^-, using our previously computed interaction potential. Additionally, we obtain the same rate coefficients for the C7_7N^-/H2_2 system by using a scaling procedure that makes use of the new C7_7N^-/He rate coefficients, as discussed in detail in the present paper. Their significance in affecting internal state populations in ISM environments where the title anions have been found is analyzed by using the concept of critical density indicators. Finally, similarities and differences between such species and the comparative efficiency of their collision rate coefficients are discussed. These new calculations suggest that, at least for the case of these longer chains, the rotational populations could reach local thermal equilibrium conditions within their observational environments

    Similar works

    Full text

    thumbnail-image

    Available Versions