35 research outputs found

    Identification of proximal SUMO-dependent interactors using SUMO-ID

    Get PDF
    The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.Cancer Signaling networks and Molecular Therapeutic

    HAMLET Binding to α-Actinin Facilitates Tumor Cell Detachment

    Get PDF
    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed

    Changes in Proteasome Structure and Function Caused by HAMLET in Tumor Cells

    Get PDF
    BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. CONCLUSIONS/SIGNIFICANCE: The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells

    What is the value of orthodontic treatment?

    Get PDF
    Orthodontic treatment is as popular as ever. Orthodontists frequently have long lists of people wanting treatment and the cost to the NHS in England was £258m in 2010-2011 (approximately 10% of the NHS annual spend on dentistry). It is important that clinicians and healthcare commissioners constantly question the contribution of interventions towards improving the health of the population. In this article, the authors outline some of the evidence for and against the claims that people with a malocclusion are at a disadvantage compared with those without a malocclusion and that orthodontic treatment has significant health benefits. The authors would like to point out that this is not a comprehensive and systematic review of the entire scientific literature. Rather the evidence is presented in order to stimulate discussion and debate

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Edentulousness and oral rehabilitation: experiences from the patients' perspective

    No full text

    Postural orientation in subjects with anterior cruciate ligament injury: development and first evaluation of a new observational test battery.

    Get PDF
    Anterior cruciate ligament (ACL) injury is associated with mechanical instability and defective neuromuscular function, and can lead to further injury, increased joint loading and osteoarthritis. Patients with ACL injury demonstrate altered postural orientation, manifested as observable "substitution patterns" (SPs) but no one has applied a clinically useful method to systematically study postural orientation in these patients. Here, we investigated the presence of such patterns in 24 adults with ACL injury and in 49 controls, in parallel with the development and a first evaluation of a new test battery, test for SPs. The rationale behind the test for SPs was to characterize postural orientation as the ability to maintain appropriate relationships between body segments and environment during weight-bearing movements. In this first study, patients displayed SPs more frequently and/or more clearly on their injured, but also their uninjured side than did controls. Inter-rater and intra-rater reproducibility was good at a group level. Future studies of validity, responsiveness and including other subgroups of patients with ACL injury will have to prove if the test for SPs can be used in the diagnostics of defective neuromuscular function following knee injury, when planning and carrying out training and rehabilitation and when deciding appropriate time to return to activity and sports after ACL injury
    corecore