651 research outputs found

    A Note on the Regularity of Inviscid Shell Model of Turbulence

    Get PDF
    In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade initiated in \cite{CLT05}. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy unCkn1/3(nlog(n+1))1|{u_n}| \le C k_n^{-1/3} (\sqrt{n} \log(n+1))^{-1}, for some positive absolute constant CC, which is the analogue of the Onsager's conjecture for the Euler's equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the ``two-dimensional'' parameters regime

    Coulomb plasmas in outer envelopes of neutron stars

    Get PDF
    Outer envelopes of neutron stars consist mostly of fully ionized, strongly coupled Coulomb plasmas characterized by typical densities about 10^4-10^{11} g/cc and temperatures about 10^4-10^9 K. Many neutron stars possess magnetic fields about 10^{11}-10^{14} G. Here we briefly review recent theoretical advances which allow one to calculate thermodynamic functions and electron transport coefficients for such plasmas with an accuracy required for theoretical interpretation of observations.Comment: 4 pages, 2 figures, latex2e using cpp2e.cls (included). Proc. PNP-10 Workshop, Greifswald, Germany, 4-9 Sept. 2000. Accepted for publication in Contrib. Plasma Phys. 41 (2001) no. 2-

    Stochastic attractors for shell phenomenological models of turbulence

    Full text link
    Recently, it has been proposed that the Navier-Stokes equations and a relevant linear advection model have the same long-time statistical properties, in particular, they have the same scaling exponents of their structure functions. This assertion has been investigate rigorously in the context of certain nonlinear deterministic phenomenological shell model, the Sabra shell model, of turbulence and its corresponding linear advection counterpart model. This relationship has been established through a "homotopy-like" coefficient λ\lambda which bridges continuously between the two systems. That is, for λ=1\lambda=1 one obtains the full nonlinear model, and the corresponding linear advection model is achieved for λ=0\lambda=0. In this paper, we investigate the validity of this assertion for certain stochastic phenomenological shell models of turbulence driven by an additive noise. We prove the continuous dependence of the solutions with respect to the parameter λ\lambda. Moreover, we show the existence of a finite-dimensional random attractor for each value of λ\lambda and establish the upper semicontinuity property of this random attractors, with respect to the parameter λ\lambda. This property is proved by a pathwise argument. Our study aims toward the development of basic results and techniques that may contribute to the understanding of the relation between the long-time statistical properties of the nonlinear and linear models

    Baxter T-Q Equation for Shape Invariant Potentials. The Finite-Gap Potentials Case

    Get PDF
    The Darboux transformation applied recurrently on a Schroedinger operator generates what is called a {\em dressing chain}, or from a different point of view, a set of supersymmetric shape invariant potentials. The finite-gap potential theory is a special case of the chain. For the finite-gap case, the equations of the chain can be expressed as a time evolution of a Hamiltonian system. We apply Sklyanin's method of separation of variables to the chain. We show that the classical equation of the separation of variables is the Baxter T-Q relation after quantization.Comment: 25 pages, no figures Extended section 10, one reference added. Version accepted for publication in Jurnal of Mathematical Physic

    Vorticity alignment results for the three-dimensional Euler and Navier-Stokes equations

    Full text link
    We address the problem in Navier-Stokes isotropic turbulence of why the vorticity accumulates on thin sets such as quasi-one-dimensional tubes and quasi-two-dimensional sheets. Taking our motivation from the work of Ashurst, Kerstein, Kerr and Gibson, who observed that the vorticity vector {\boldmath\omega} aligns with the intermediate eigenvector of the strain matrix SS, we study this problem in the context of both the three-dimensional Euler and Navier-Stokes equations using the variables \alpha = \hat{{\boldmath\xi}}\cdot S\hat{{\boldmath\xi}} and {\boldmath\chi} = \hat{{\boldmath\xi}}\times S\hat{{\boldmath\xi}} where \hat{{\boldmath\xi}} = {\boldmath\omega}/\omega. This introduces the dynamic angle ϕ(x,t)=arctan(χα)\phi (x,t) = \arctan(\frac{\chi}{\alpha}), which lies between {\boldmath\omega} and S{\boldmath\omega}. For the Euler equations a closed set of differential equations for α\alpha and {\boldmath\chi} is derived in terms of the Hessian matrix of the pressure P={p,ij}P = \{p_{,ij}\}. For the Navier-Stokes equations, the Burgers vortex and shear layer solutions turn out to be the Lagrangian fixed point solutions of the equivalent (\alpha,{\boldmath\chi}) equations with a corresponding angle ϕ=0\phi = 0. Under certain assumptions for more general flows it is shown that there is an attracting fixed point of the (\alpha,\bchi) equations which corresponds to positive vortex stretching and for which the cosine of the corresponding angle is close to unity. This indicates that near alignment is an attracting state of the system and is consistent with the formation of Burgers-like structures.Comment: To appear in Nonlinearity Nov. 199

    Pores in Bilayer Membranes of Amphiphilic Molecules: Coarse-Grained Molecular Dynamics Simulations Compared with Simple Mesoscopic Models

    Full text link
    We investigate pores in fluid membranes by molecular dynamics simulations of an amphiphile-solvent mixture, using a molecular coarse-grained model. The amphiphilic membranes self-assemble into a lamellar stack of amphiphilic bilayers separated by solvent layers. We focus on the particular case of tension less membranes, in which pores spontaneously appear because of thermal fluctuations. Their spatial distribution is similar to that of a random set of repulsive hard discs. The size and shape distribution of individual pores can be described satisfactorily by a simple mesoscopic model, which accounts only for a pore independent core energy and a line tension penalty at the pore edges. In particular, the pores are not circular: their shapes are fractal and have the same characteristics as those of two dimensional ring polymers. Finally, we study the size-fluctuation dynamics of the pores, and compare the time evolution of their contour length to a random walk in a linear potential

    Entire solutions of hydrodynamical equations with exponential dissipation

    Get PDF
    We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at high wavenumbers k|k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any C<1/(2ln2)C<1/(2\ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C=C=1/ln2C= C_\star =1/\ln2. The same behavior with a universal constant CC_\star is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    Finite time singularities in a class of hydrodynamic models

    Get PDF
    Models of inviscid incompressible fluid are considered, with the kinetic energy (i.e., the Lagrangian functional) taking the form Lkαvk2d3k{\cal L}\sim\int k^\alpha|{\bf v_k}|^2d^3{\bf k} in 3D Fourier representation, where α\alpha is a constant, 0<α<10<\alpha< 1. Unlike the case α=0\alpha=0 (the usual Eulerian hydrodynamics), a finite value of α\alpha results in a finite energy for a singular, frozen-in vortex filament. This property allows us to study the dynamics of such filaments without the necessity of a regularization procedure for short length scales. The linear analysis of small symmetrical deviations from a stationary solution is performed for a pair of anti-parallel vortex filaments and an analog of the Crow instability is found at small wave-numbers. A local approximate Hamiltonian is obtained for the nonlinear long-scale dynamics of this system. Self-similar solutions of the corresponding equations are found analytically. They describe the formation of a finite time singularity, with all length scales decreasing like (tt)1/(2α)(t^*-t)^{1/(2-\alpha)}, where tt^* is the singularity time.Comment: LaTeX, 17 pages, 3 eps figures. This version is close to the journal pape

    Turbulence and passive scalar transport in a free-slip surface

    Full text link
    We consider the two-dimensional (2D) flow in a flat free-slip surface that bounds a three-dimensional (3D) volume in which the flow is turbulent. The equations of motion for the two-dimensional flow in the surface are neither compressible nor incompressible but strongly influenced by the 3D flow underneath the surface. The velocity correlation functions in the 2D surface and in the 3D volume scale with the same exponents. In the viscous subrange the amplitudes are the same, but in the inertial subrange the 2D one is reduced to 2/3 of the 3D amplitude. The surface flow is more strongly intermittent than the 3D volume flow. Geometric scaling theory is used to derive a relation between the scaling of the velocity field and the density fluctuations of a passive scalar advected on the surface.Comment: 11 pages, 10 Postscript figure
    corecore