405 research outputs found

    AX-PET: A novel PET concept with G-APD readout

    Get PDF
    Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 keV and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like 22 Na sources. Their performance in terms of energy ( R energy ≈ 11.8 % (FWMH) at 511 keV) and spatial resolution was assessed ( σ axial ≈ 0.65 mm ), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    First observation of excited states in 173Hg

    Full text link
    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.Comment: 5 pages, 4 figure

    Quasiparticle alignments and alpha-decay fine structure of Pt-175

    Get PDF
    Excited states and decay properties of 175 Pt have been investigated using the 92 Mo ( 86 Sr , 2 p n ) fusion-evaporation reaction. The JUROGAM I γ -ray spectrometer and the GREAT spectrometer were used in conjunction with the gas-filled recoil separator RITU for the measurement of the radiation at the target and focal plane positions, respectively. Two new band structures, assigned to be based on the I π = ( 7 / 2 − ) ground state in 175 Pt, have been established and the known yrast band has been extended up to I π = ( 49 / 2 + ) . Rotational properties of the excited states in 175 Pt have been investigated within the cranked shell-model formalism. The low-frequency changes in the alignments of the positive- and negative-parity bands are interpreted as a sign of proton-pair excitations in the rotating core. Furthermore, the α -decay measurements reveal a candidate for a fourth α -decay branch in 175 Pt, feeding a non-yrast state in 171 Os

    Study of Intermediate-spin States of Y-98

    Get PDF
    The nuclear structure of the odd–odd nucleus 98Y has been re-investigated by observing prompt γ rays emitted following the proton-induced fission of a 238U target, using the JUROGAM-II multidetector array. New highspin decays have been observed and placed in the level schemes using triple coincidences. The experimental level energies and γ-decay patterns are compared to GICM and QPRM calculations, assuming that this neutronrich N = 59 isotone is spherical at low energies and prolate deformed at intermediate spins.Web of Science47391691

    Identification of isomeric states in the N=73 neutron-deficient nuclei 132Pr and 130La

    Get PDF
    Decays from isomeric states in the neutron-deficient N=73 nuclei 132Pr and 130La have been observed for the first time. Half-lives of 486(70) ns and 2.46(4) μs were measured for two isomeric states in 132Pr. The decay from the 486 ns (8‑) isomer has been interpreted as a hindered E1 transition from the bandhead state of the excited πh11/2⊗νg7/2 configuration. The decay from the 2.5 μs (8+) isomer is consistent with the Weisskopf estimate for a low-energy E2 transition. An analogous 0.74(3) μs decay from an (8+) isomer in the neighboring isotone 130La has also been observed which similarly can be explained if the transition has E2 character. The Weisskopf interpretation for the isomer hindrance is strengthened by the lack of evidence for shape or K isomerism due to the γ-soft shapes predicted by configuration-constrained potential-energy-surface calculations
    corecore